Приложение 1

Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Горский государственный аграрный университет»

Проректор по УВР Мода Кабалоев Т.Х. 428 » февраля 2018 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля и промежуточной аттестации при освоении ОПОП ВО, реализуемой по ФГОС ВО 3++

по дисциплине

Б1.0.24.03. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Направление подготовки – 35.03.06. «Агроинженерия»

Направленность подготовки Технические системы в агробизнесе

Уровень высшего образования - бакалавриат

Форма обучения - очная/заочная

Владикавказ 2018-

Фонд оценочных средств разработали:

На кафедре графики и механики Сужаев Л.П., доцент Баскаев А.Н., доцент

Фонд оценочных средств согласован: на заседании кафедры графики и механики

протокол № 7 от « 22 » февраля 2018 г.

Зав. кафедрой

(подпись)

Эксперт(ы): Доц. К.Т.Н. олжность, учёное звание, подпись)

Предназначен для обучающихся очной и заочной форм обучения.

1. Область применения, цели и задачи фонда оценочных средств

Фонд оценочных средств (ФОС) является неотъемлемой частью рабочей программы дисциплины *«Сопротивление материалов»* и предназначен для контроля и оценки образовательных достижений обучающихся (в т.ч. по самостоятельной работе обучающихся, далее – СРО), освоивших программу данной дисциплины.

Целью фонда оценочных средств является установление соответствия уровня подготовки (бакалавриат) обучающихся требованиям ФГОС ВО по направлению подготовки 35.03.06. «Агроинженерия».

Рабочей программой дисциплины *«Сопротивление материалов»* предусмотрено формирование следующих компетенций:

- 1. ОПК-1 (ИД-1_{ОПК-1}).
- 2. УК-1 (**ИД-1**_{УК-1}; **ИД-2**_{УК-1}).

2. Описание показателей и критериев оценивания компетенций, формируемых в процессе освоения дисциплины (модуля)

Описание показателей и критериев оценивания компетенций, формируемых в процессе освоения дисциплины (модуля), и используемые оценочные средства:

- устный опрос
- тест (для текущего контроля)
- коллоквиум
- расчетно-графическая работа
- промежуточный экзамен.

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Показателями оценивания компетенций являются следующие результаты обучения:

Таблица 1 – Результаты обучения, соотнесенные с общими результатами освоения образовательной программы

Код	·		Порочения программы
	Результаты освоения ОП	Индикаторы компетенции	Перечень планируемых результатов обучения по дисциплине
компетенции			
ОПК-1	Способен решать типовые	ИД-10Пк-1 использует основные	знать:
	задачи профессиональной	законы естественнонаучных	- основные понятия и методы математики, которые необходимы для
		дисциплин для решения	решения стандартных задач в соответствии с направленностью
	деятельности на основе	стандартных задач в	профессиональной деятельности;
	знаний основных законов	соответствии с	основные законы естественнонаучных дисциплин (физики) для
	математических,	направленностью	решения стандартных задач в соответствии с направленностью
		профессиональной	профессиональной деятельности.
	естественнонаучных и	деятельности	
	1		уметь:
	общепрофессиональных		- использовать основные понятия и методы математики для
	дисциплин с применением		решения стандартных задач в соответствии с направленностью
	информационно-		профессиональной деятельности;
	коммуникационных		использовать основные законы естественнонаучных дисциплин
	технологий		(физики) для решения стандартных задач в соответствии с
			направленностью профессиональной деятельности.
			владеть:
			- навыками использования основных понятий и методов
			математики для решения стандартных задач в соответствии с
			направленностью профессиональной деятельности; использования
			знаний основных законов естественнонаучных дисциплин (физики)
			для решения стандартных задач в соответствии с направленностью
			профессиональной деятельности.
УК-1	Способен осуществлять	ИД-1ук-1 анализирует задачу,	знать:
		выделяя ее базовые	

поиск, критический	составляющие, осуществляет	- базовые составляющие задачи, ее декомпозицию;
анализ и синтез	декомпозицию задачи	
информации, применять		методы анализа задач, выделяя ее базовые составляющие,
системный подход для		осуществлять декомпозицию задачи.
		уметь:
решения поставленных		- выделять базовые составляющие задачи;
задач		
		анализировать задачу, выделять ее базовые составляющие,
		осуществлять декомпозицию задачи.
		владеть:
		- навыками декомпозиции задачи;
		навыками анализа задачи, выделяя ее базовые составляющие,
		осуществлять декомпозицию задачи.
	$ИД-2_{УК-1}$ осуществляет поиск	знать:
	информации, необходимой для	- методы нахождения и анализа информации, необходимой для
	решения поставленной задачи	решения поставленной задачи;
		методы нахождения и критического анализа информации,
		необходимой для решения поставленной задачи.
		уметь:
		- находить информацию необходимую для решения поставленной
		задачи;
		использовать методы нахождения и критического анализа
		информации, необходимой для решения поставленной задачи.
		владеть:
		- навыками сбора и анализа информации, необходимой для
		решения поставленной задачи;
		навыками нахождения и критического анализа информации,
		необходимой для решения поставленной задачи.

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Таблица 2 - Порядок оценки освоения обучающимися учебного материала

№ п/п	Наименование раздела дисциплины (модуля)	Компетенции (части компетенций)	средств	ночные а текущего успеваемости	Шкала оценивания
1	Модуль 1	ОПК-1; УК-1	Устный опро	ос	Отлично
			Коллоквиум	(текущий	Хорошо
			контроль)		Удовлетворительно
					Неудовлетворительно
2.	Модуль 2	ОПК-1; УК-1	Устный опро	ос	Отлично
			Расчетно-гра	афические	Хорошо
			работы		Удовлетворительно
			Коллоквиум контроль)	(текущий	Неудовлетворительно
3.	Модуль 3	ОПК-1; УК-1	Устный опро	ЭС	Отлично
			Расчетно-графические		Хорошо
		работы		Удовлетворительно	
					Неудовлетворительно
			Коллоквиум контроль)	(текущий	
Итого:			Форма контроля	Оценочные средства промежуточн ой аттестации	Шкала оценивания
		ОПК-1; УК-1	Экзамен	Экзамен по	Отлично
				билетам	Хорошо
					Удовлетворительно
					Неудовлетворительно

Результатом освоения дисциплины *«Сопротивление материалов»* является установление одного из уровней сформированности компетенций: высокий, повышенный, пороговый, недостаточный.

Показатели, критерии и шкалы оценивания компетенций

Таблица 3 – Показатели компетенций по уровню их сформированности (экзамен)

Показатели компетенций, индикаторы компетенций	Критерий оценивания	Шкала оценивания	Уровень сформированной компетенции и индикатора компетенций
Знать	Знает	отлично	высокий
(соответствует		хорошо	повышенный
таблице 1)		удовлетворительно	пороговый
	Не знает	неудовлетворительно	недостаточный
Уметь	Умеет	отлично	высокий
(соответствует		хорошо	повышенный
таблице 1)		удовлетворительно	пороговый
	не умеет	неудовлетворительно	недостаточный
Владеть	Владеет	отлично	высокий
(соответствует		хорошо	повышенный
таблице 1)		удовлетворительно	пороговый
	Не владеет	неудовлетворительно	недостаточный

Таблица 4 – Соотношение показателей и критериев оценивания компетенций со шкалой оценивания и уровнем их сформированности

Показатели	Критерий оценивания	Уровень
компетенций,		сформированной
индикаторы		компетенции и
компетенций		индикатора
		компетенций
Знать	Показывает полные и глубокие знания,	высокий
(соответствует	логично и аргументированно отвечает на все	
таблице 1)	вопросы, в том числе дополнительные,	
	показывает высокий уровень теоретических	
	знаний	
	Показывает глубокие знания, грамотно	повышенный
	излагает ответ, достаточно полно отвечает на	
	все вопросы, в том числе дополнительные. В	
	то же время при ответе допускает	
	несущественные погрешности	
	Показывает достаточные, но не глубокие	пороговый
	знания, при ответе не допускает грубых	_

	ошибок или противоречий, однако в формулировании ответа отсутствует должная связь между анализом, аргументацией и выводами. Для получения правильного ответа требуются уточняющие вопросы	
	Показывает недостаточные знания, не способен аргументированно и последовательно излагать материал, допускает грубые ошибки, неправильно отвечает на дополнительные вопросы или затрудняется с ответом	недостаточный
Уметь (соответствует таблице 1)	Умеет применять полученные знания для решения конкретных практических задач, способен предложить альтернативные решения анализируемых проблем, формулировать выводы	высокий
	Умеет применять полученные знания для решения конкретных практических задач, способен формулировать выводы, но не может предложить альтернативные решения анализируемых проблем	повышенный
	При решении конкретных практических задач возникают затруднения	пороговый
	Не может решать практические задачи	недостаточный
Владеть (соответствует таблице 1)	Владеет навыками, необходимыми для профессиональной деятельности, способен оценить результат своей деятельности	высокий
	Владеет навыками, необходимыми для профессиональной деятельности, затрудняется оценить результат своей деятельности	повышенный
	Показывает слабые навыки, необходимые для профессиональной деятельности	пороговый
	Отсутствие навыков	недостаточный

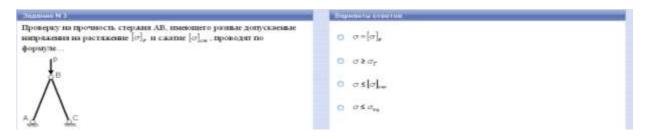
4. Оценочные средства и критерии сформированности компетенций

- устный опрос
- тест (для текущего контроля)
- коллоквиум
- расчетно-графическая работа
- промежуточный экзамен.

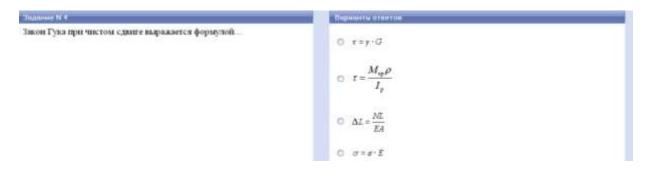
4.1 Устный опрос

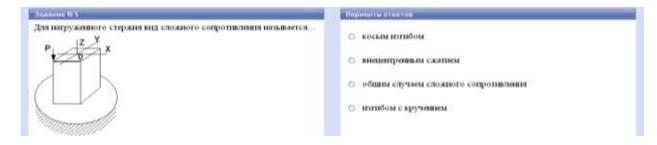
Устный опрос проводится на каждом занятии в целях закрепления и конкретизации изученного теоретического материала.

Критерии оценки уровня сформированности компетенций для устного опроса:

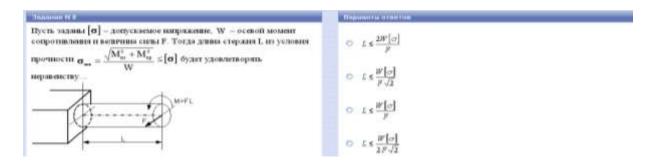

- оценка «отлично»: обучающимся дан полный, развернутый ответ на поставленный вопрос; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание по дисциплине демонстрируются на фоне понимания его в системе данной науки и междисциплинарных связей. Обучающийся владеет терминологией, способен приводить примеры, высказывает свою точку зрения с опорой на знания и опыт;
- оценка «хорошо»: обучающимся дан полный, развернутый ответ на поставленный вопрос, показано умение выделять существенные несущественные признаки, причинно-следственные связи. Ответ логичен, выстроен, но совершены единичные ошибки. Не в полной мере владеет Даны знаниями всей дисциплине. ответы дополнительные, ПО на поясняющие вопросы;
- оценка «удовлетворительно»: ответ на вопрос не полный, с ошибками. Обучающийся путается в деталях, с затруднением пользуется профессиональной терминологией. Есть замечания к построению ответа, к логике и последовательности изложения. Не отвечает на дополнительные вопросы;
- оценка «неудовлетворительно»: ответ представляет собой разрозненные знания с существенными ошибками по вопросу, присутствует фрагментарность, нелогичность изложения. Обучающийся не осознает связь обсуждаемого вопроса с другими объектами дисциплины, речь неграмотная, не используется профессиональная терминология. Ответы на дополнительные вопросы не даны или неверные.

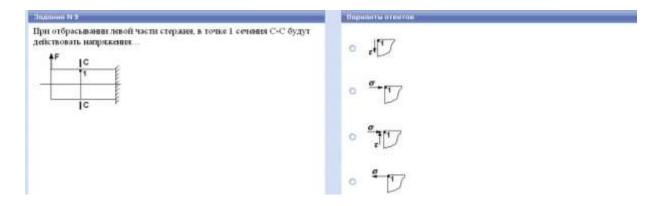
4.2 Тестовые задания (для текущего контроля)


1.

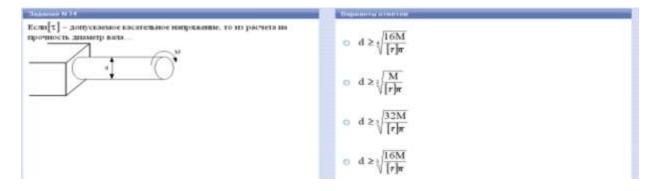


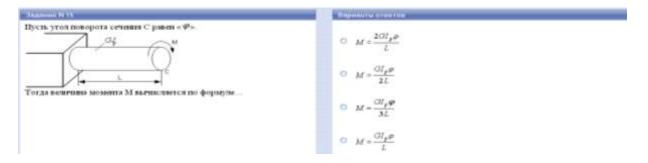
4.


5.



8.



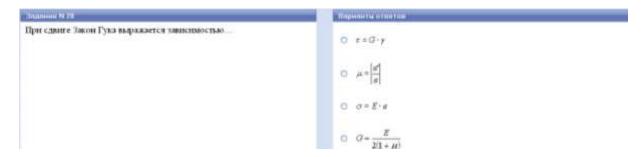

12.

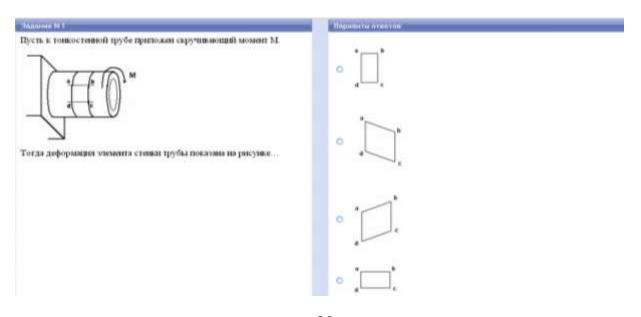
13.

16.

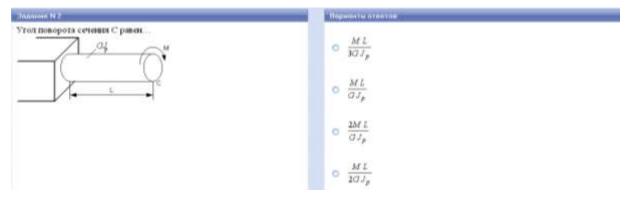
Statement 70 15	Conjunctive filter (tile
Кругицим моминтом называется	 равнодействующий момент касательных и нормальных напряжений
	 равнодействующий момент продольных сил относительно оси стералел
	 равнодействующий момент касательных мапряжений
	 равнодействующий момент пормильных напрежаций

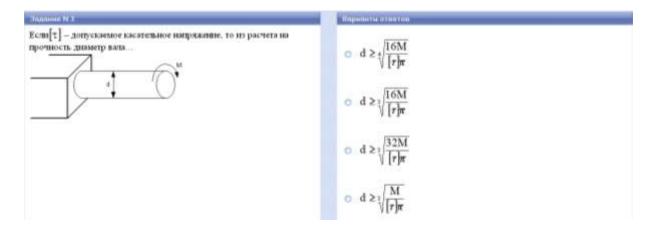
17.

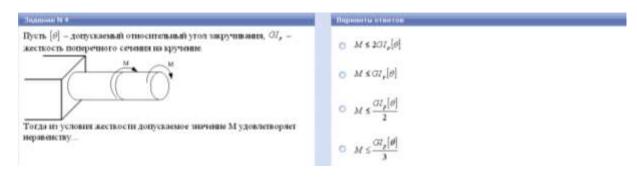



18.

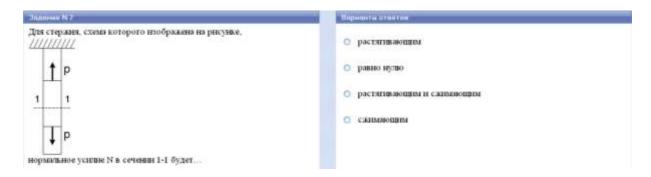
Stanoon K 18	Паравиты атпитии
Проекции главного вектора R внутренних сип, действующих в рассматриваемом сечении, на осъ стержия, называется	 поперечной силой
	 нормальным напряжением
	 эмприженяющи состояняем в точке
	 продольной силой

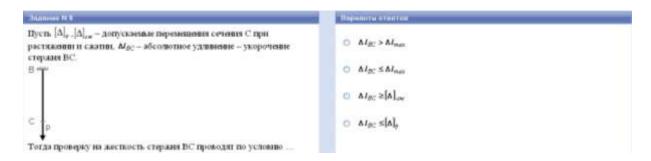

19.

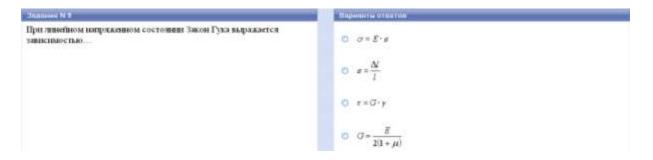

3000-00 Pt 15	Magazini (Ali Sar (192))
Привции, утверждающий, что результат действия системы сип равен сумые результатов действий каждой сипы в отдельности, называется	 привавиюм менниканности действия сил
	 превидином Сев-Веня
	 правиватом нализичета базанфов
	 все утверждения верева

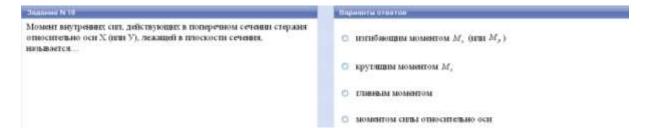


22.

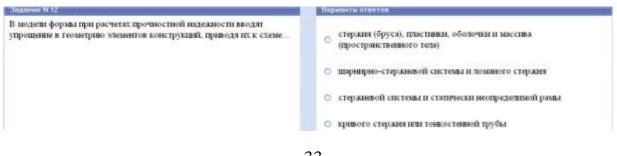


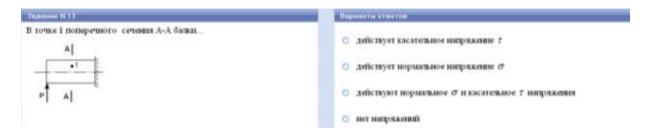

25.


26.

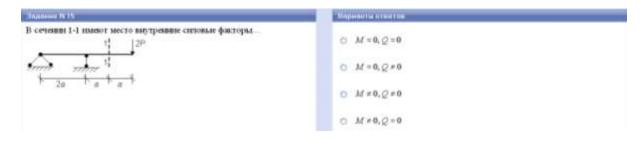


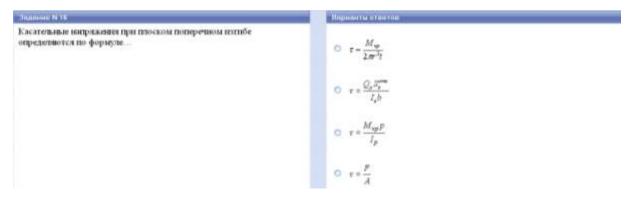

29.

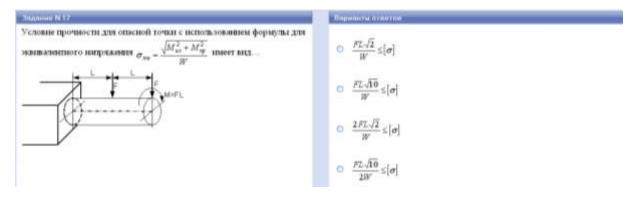


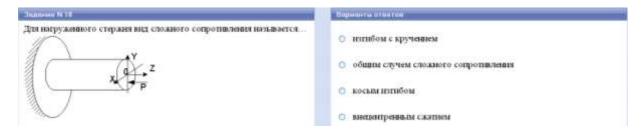

30.

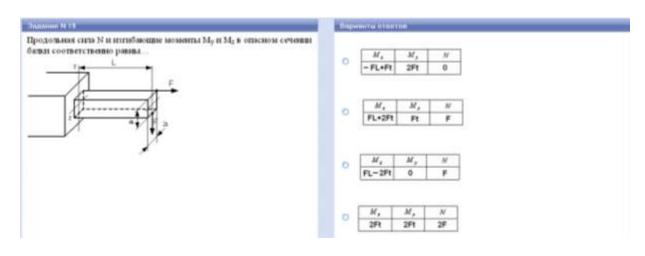
31.




34.

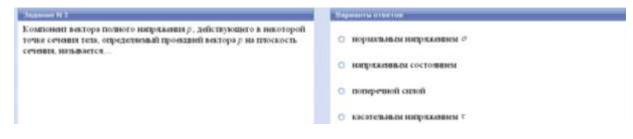



35.

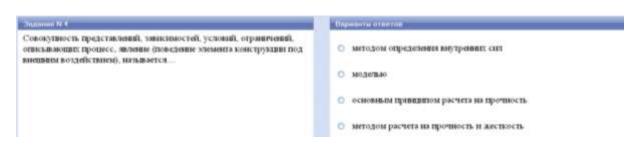

36.

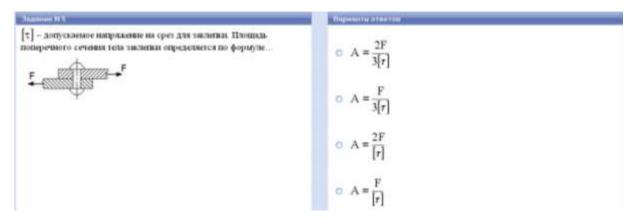
39.

40.

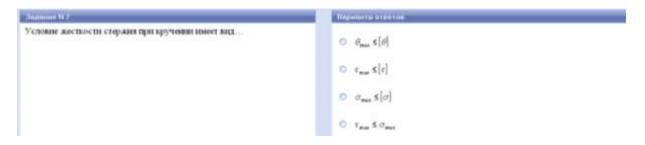


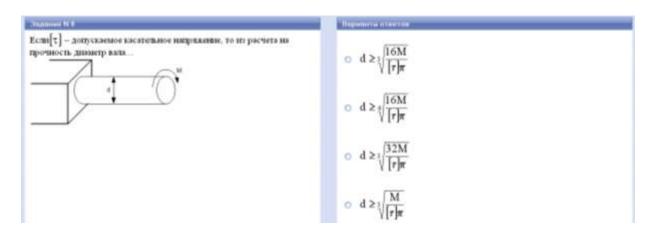
При линейном напряженном состения Закон Гука выражается законостые ... $G = \frac{E}{2(1+\mu)}$ $G = G \cdot y$ $G = \frac{E}{I}$


42.



43.


44.

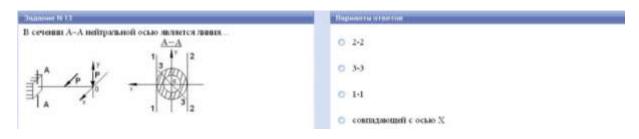


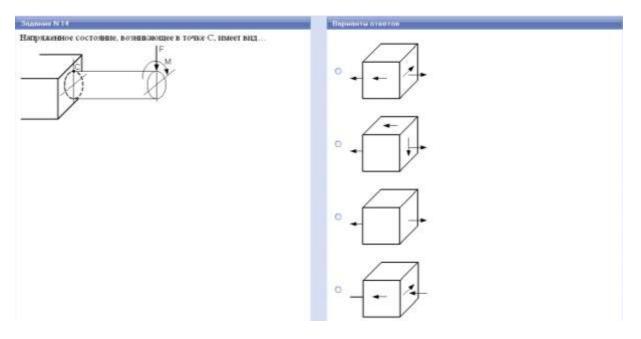
Transmitt 5	Rependent extent on
Видом инприживного состоящих, имеющего место при кручении стермам круглого поперечного сечения, виднегся	 одноосное инфункции сестопии
	объемное инприженное состояние
	 ливнейное напряживное состоящие
	чистый сдинг

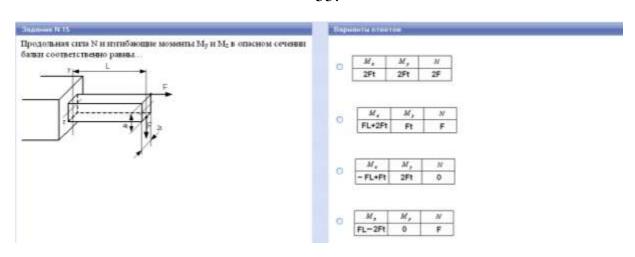
47.

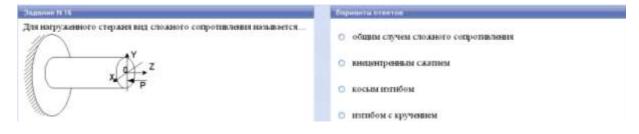
48.

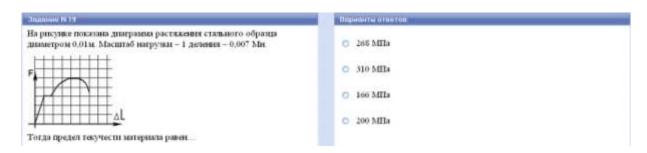
49.



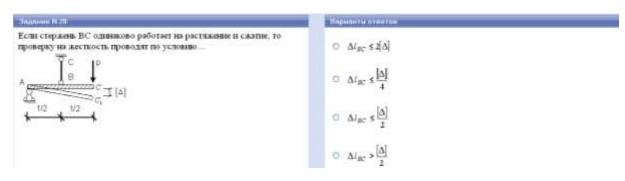


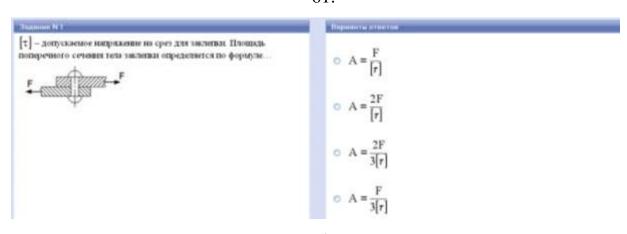

52.

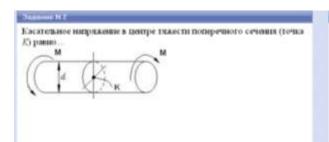

53.



56.

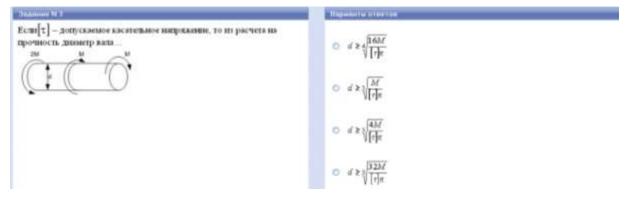


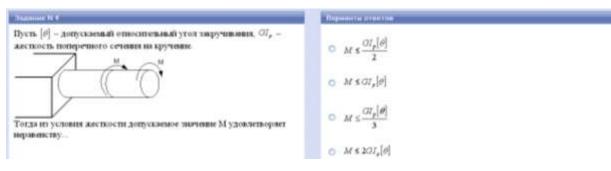




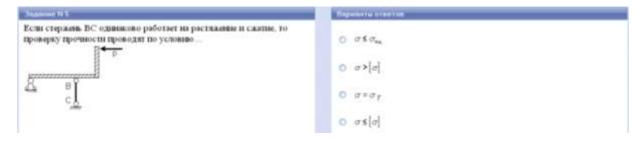
60.

61.

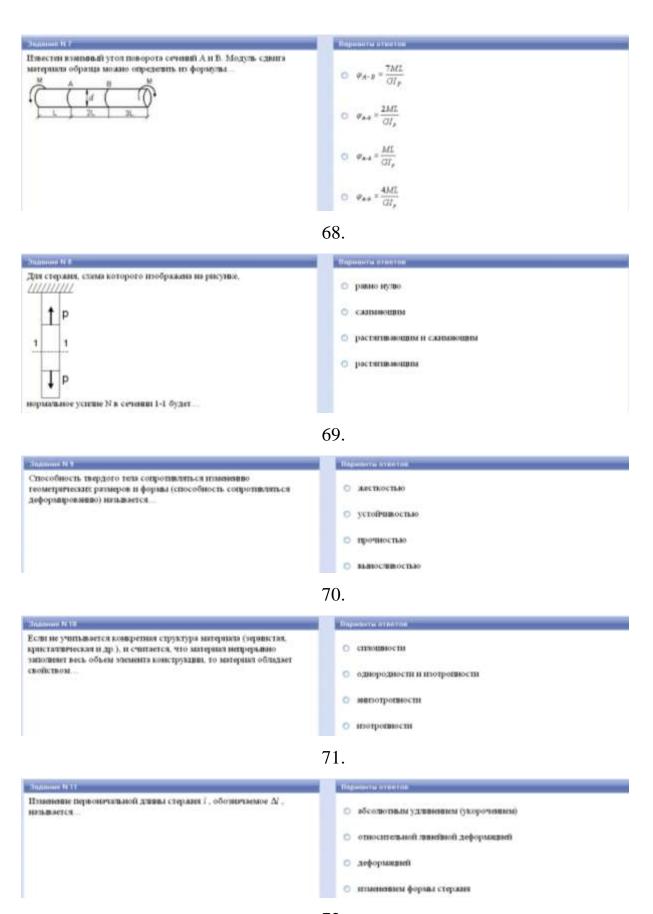



Become the experts

- $\circ \frac{Md}{2J_p}$
- M/g
- 0 0
- $O = \frac{2M}{W_p}$

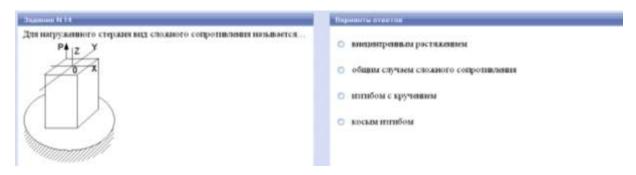

63.

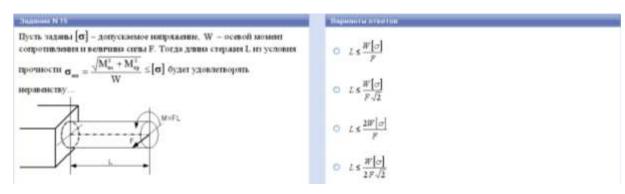
64.



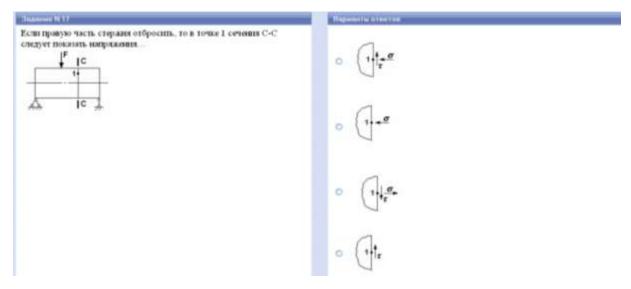
65.

66.



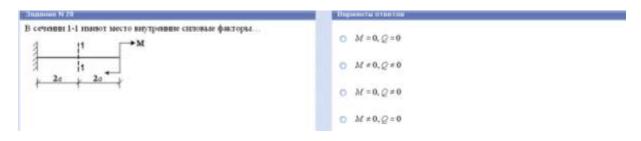


74.

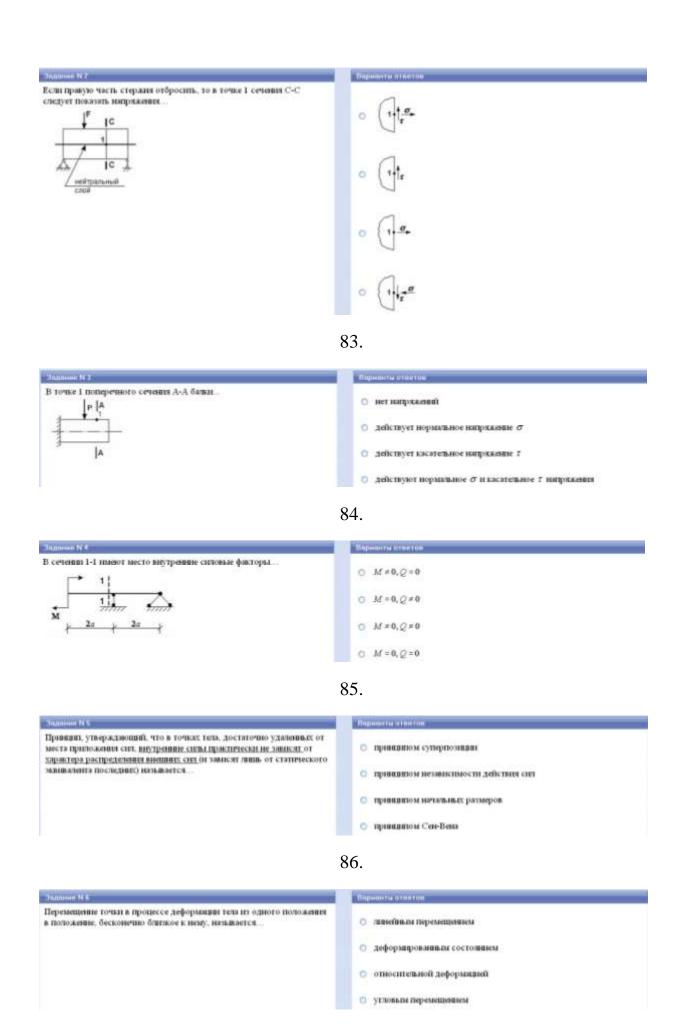


75.

76.

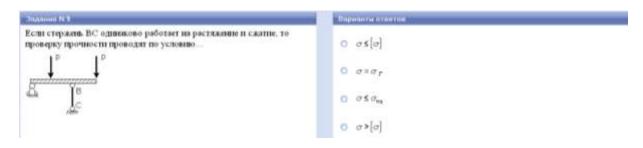


79.



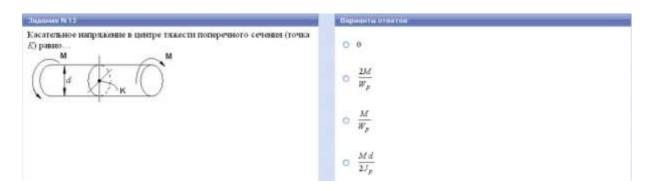
80.

81.

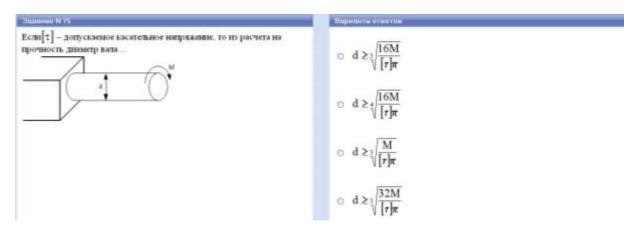


Sugarine N.7	Вирипиты извития	
Тело, дляна которого l существенно превышает характерные размеры поперечного сетенця (ширины и высоты) b и h , называется	О пъсновой	
	🗇 мыссивом (пространственным тепом)	
	оболочкой	
	 стеравем (брусом) 	
	88.	

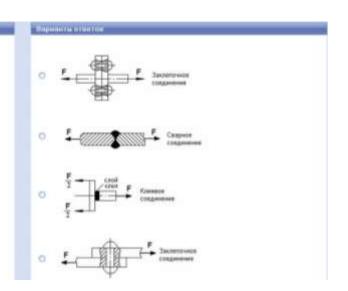
89.


90.

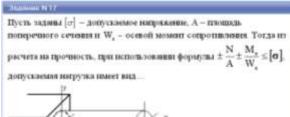
39Ammin N 11	Unpolared ninerne
Материал называется энциотропным, если	 свойства образца, выделенного из материала, зависят от его угловой ориентиви;
	 свойства образца, выделенного из материала, не зависят от его угловой ориентации
	 он тупестичный
	он имеет кристаллическую структуру

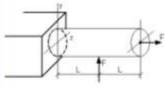

93.

94.



95.



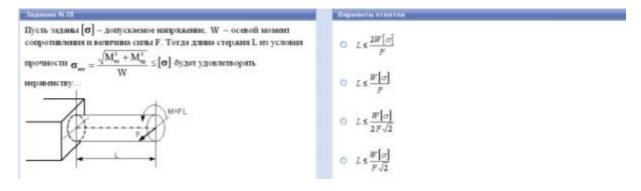


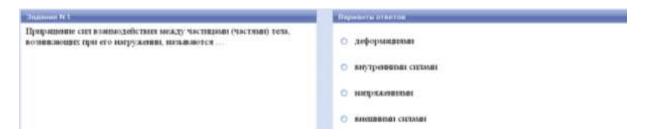
На срез (на сдвиг) рассчитывается соединение, показанное на

97.

- 0 F 5 A [\sigma]

98.

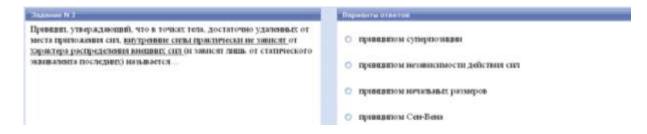


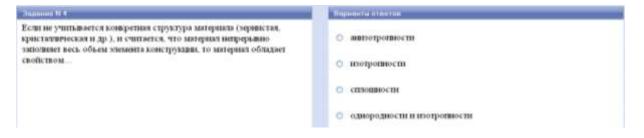

- O toucal
- точка 4
- 🔾 точка 3
- O roma 2

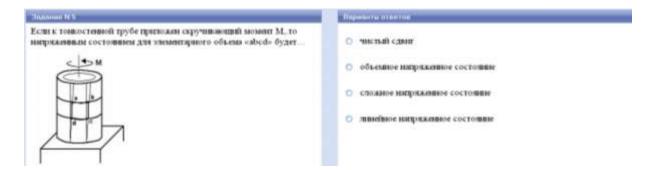
99.

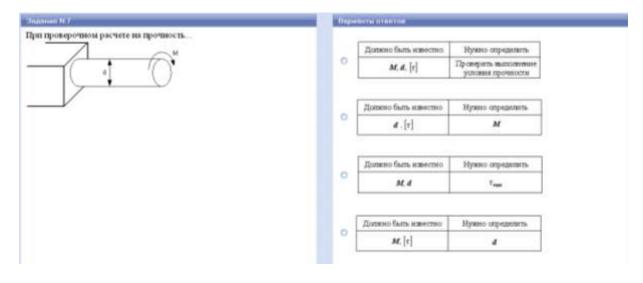


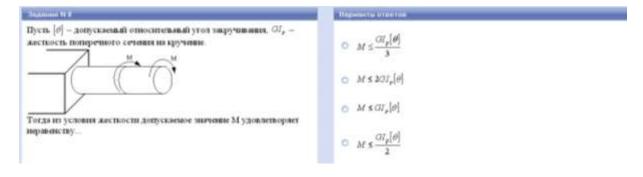
- виеветреввая скятем
- общим случаем сложного сопротивления
- косым инибом
- инибом с кручением

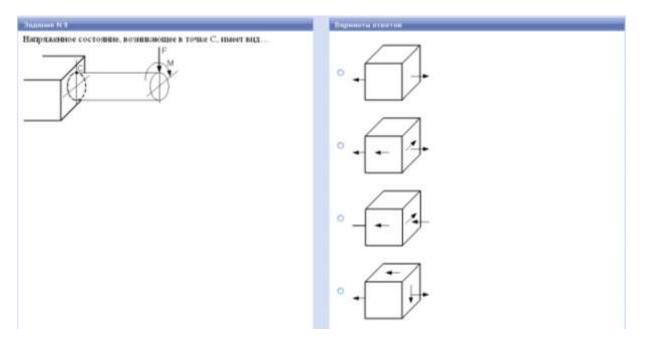


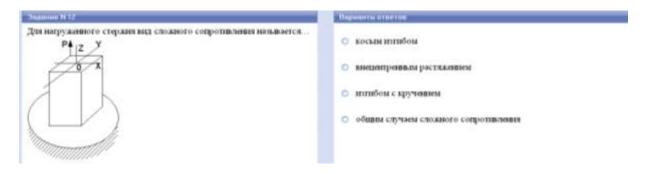


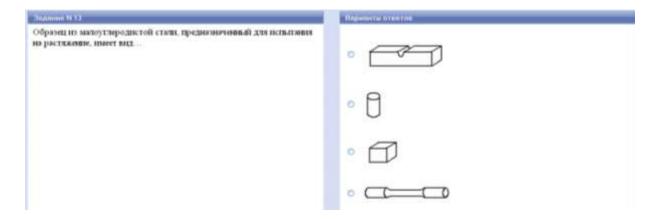




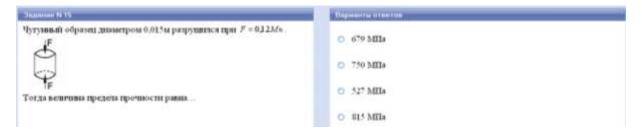


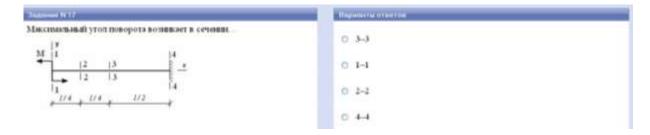


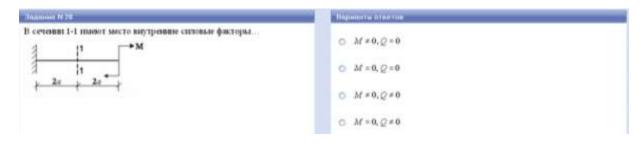


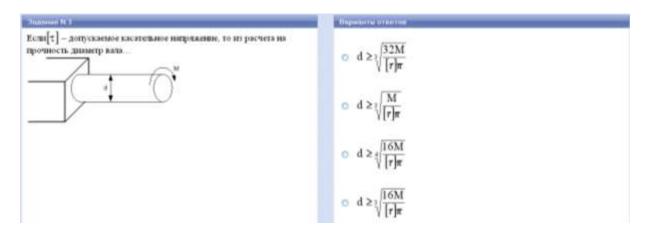


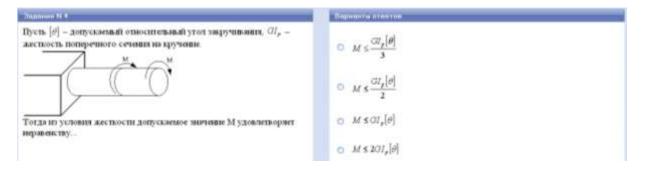

Statemen N 18	This course of the party.
На схеме, втображенной на рисуное, напболее описной точкой двалется	О точка 4
P	© точки 3
111	O 10900 1
TITITITI TO	© 109kg 2

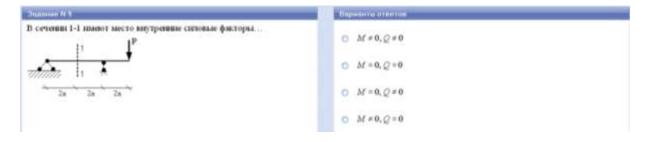


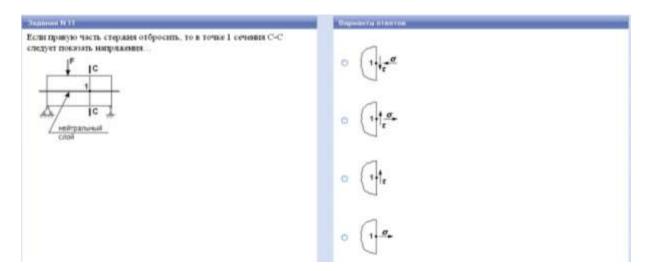




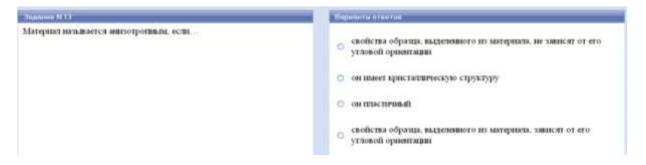


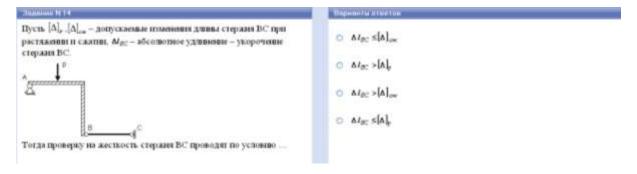


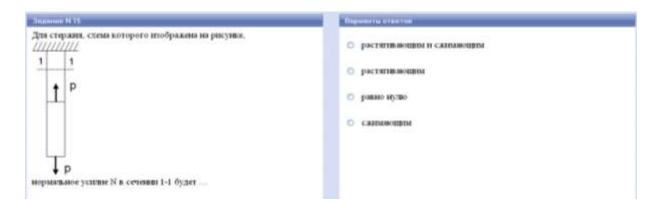


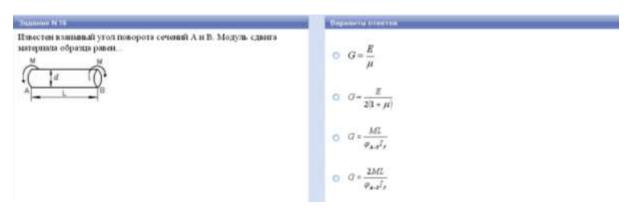

Transmit N S	Парилиты птистик
Свейство твердых теп сохранять остаточную деформяцию низывается	• плетичностью
	 вывосливостью
	 прочностью
	 жестьюстью

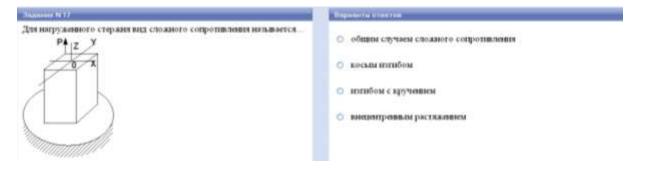
Brokeni N 7.	Disposers intering
Проекави главного вектора Р, внутревних сил на ось (X или У), лежащую в плоскости сечения, мизывается	 продольной силой N
	○ monepermont current Q. (nem Q.)
	 випримивым состоявим
	влеительным инпридменнем

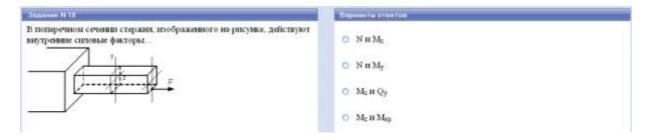


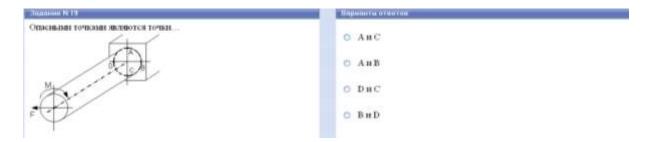


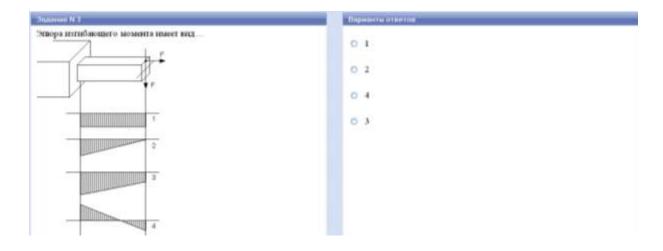








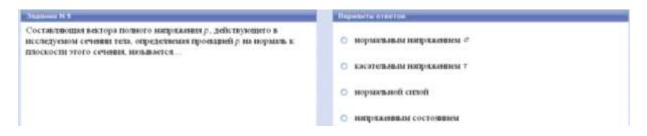


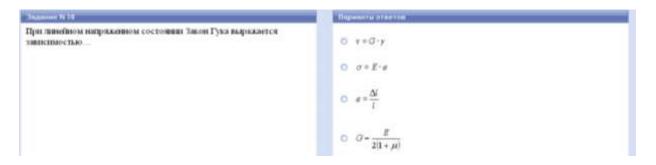


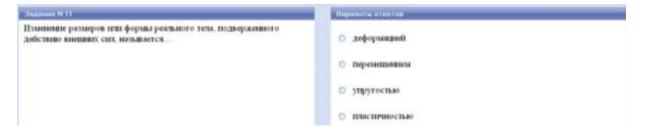
Stateme N1	Тармины ответов
Бид напряженного состояния в описных гочках при кручении с изгибом стерани круглого поперечного сечения	 плоское напряженное состояние (чистый сдвиг)
	 нутевое нипряженное состояние
	линейное инприменное состояние
	 плоское инприменное состояние

Thiston N 4	Depoison otherse
Для нагруженного стермия вид сложного сопротивления называется P. Z x	 общим случаем сложного сопротивления
	 косьям изтибом
	 внеимпренвым сжитием
	 визибом с вручением

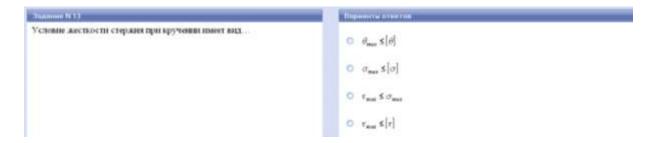
Statute NX	Migwanta startes
При испътавние образда на растижниве бълзи определовы продольная и поперечная относительные деформиции. Они оказались равными 0,00032 и 0,00013.	0.0
FF	O 0,4
Тотда величны коэффициента Пувссовы равны	O 0.25
	0 03

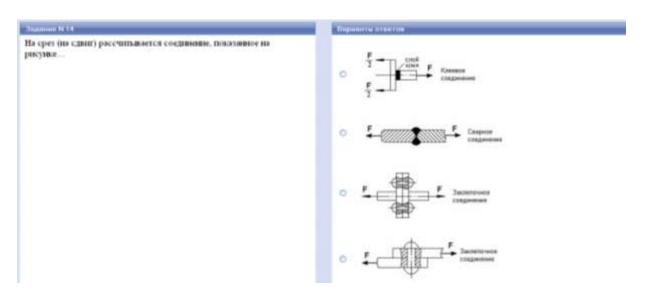


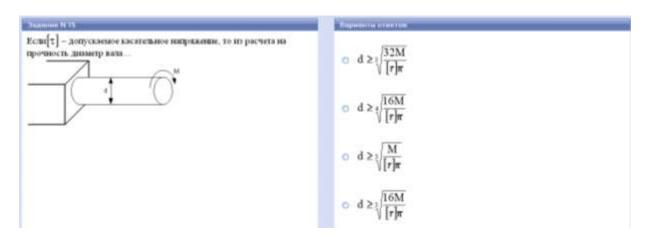




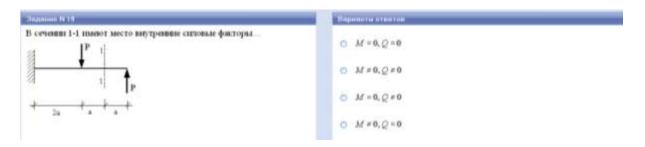
Summer N 7	Digments atheres
Чутувавай образец при испытавитс на сжитие разрушается по форме	• 🕢
	• 🖂
	· [1]
	•

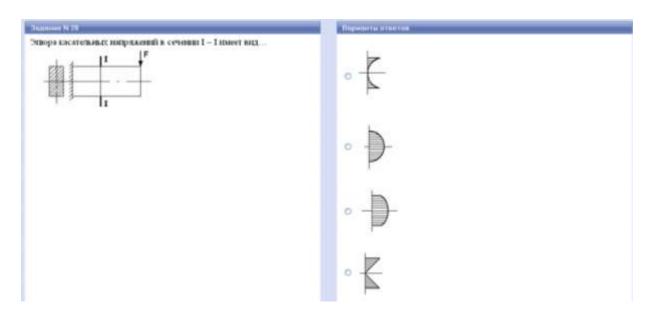


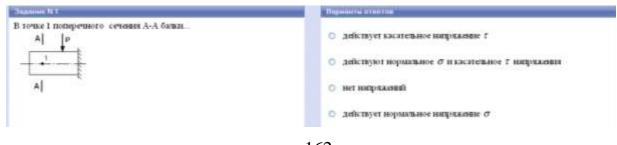


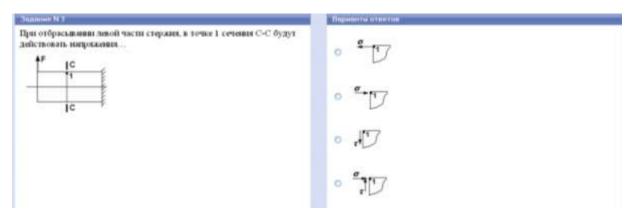


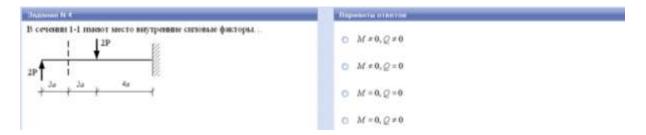
Statement N 12	They serry or serious
Модели матерацита в расчетах на прочностную надежность детали (хлемента конструкции) принято считать	 эрупкаван и идеально упрупнан
	 прочинами и упрутими
	 сплопвыва, однородныва, изотропныва и ланейно-упрутная
	 плэсперваляти потрогвалят

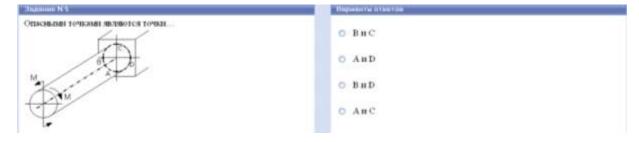


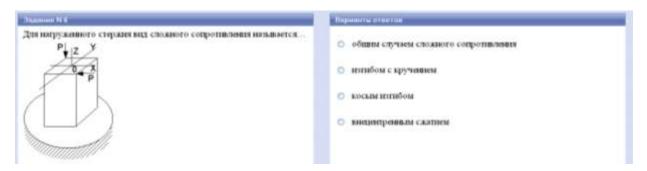


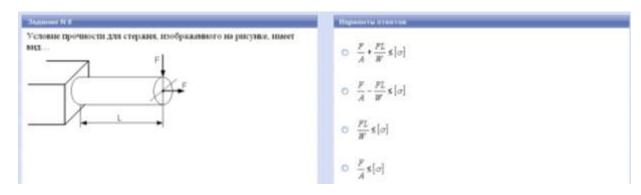


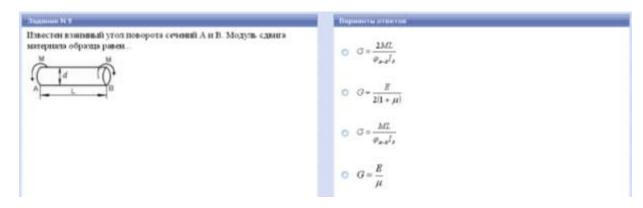


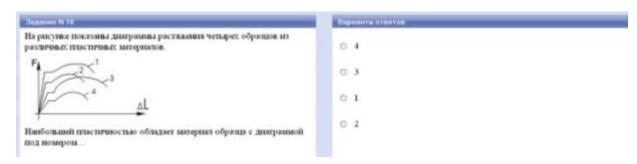


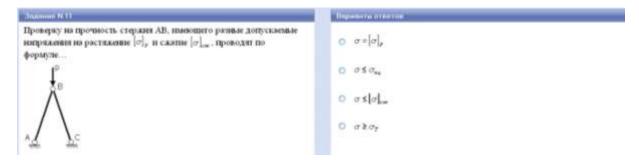




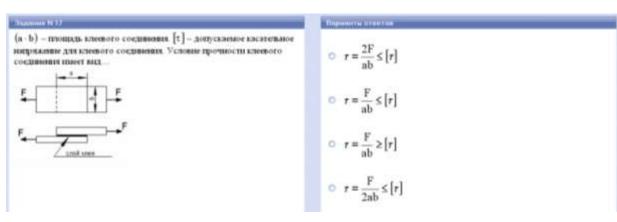


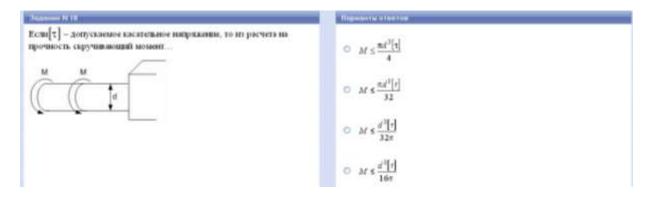


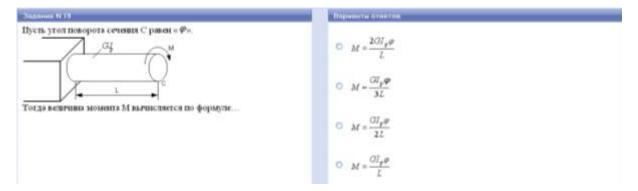


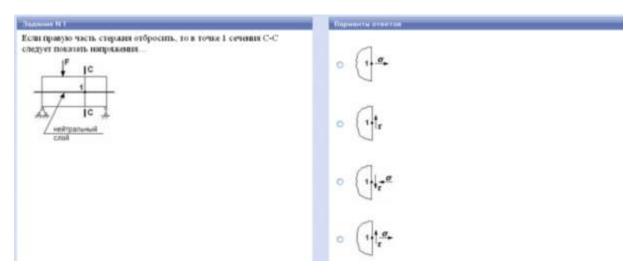


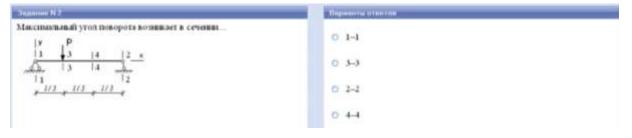


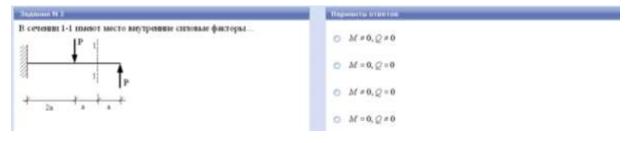


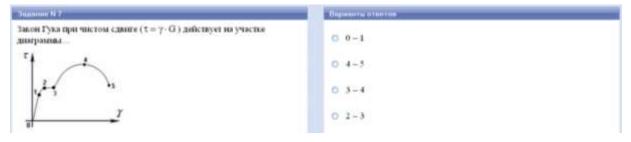


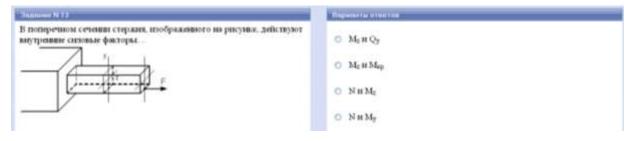


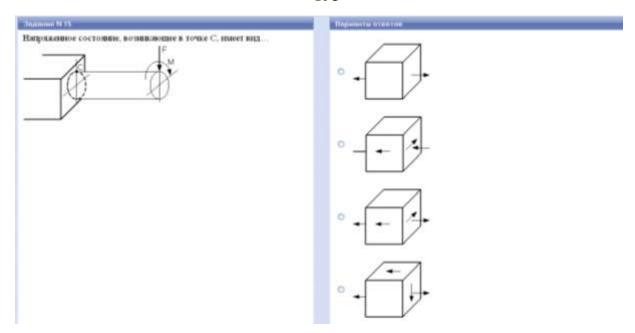


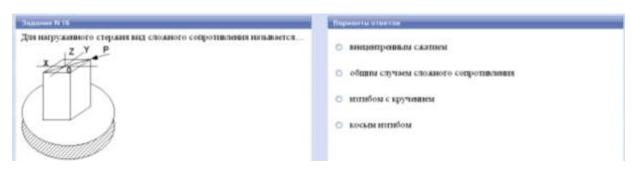


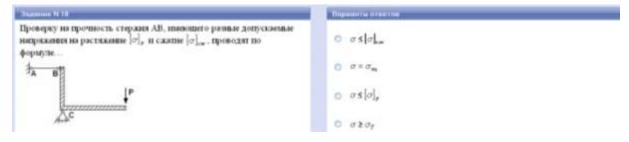


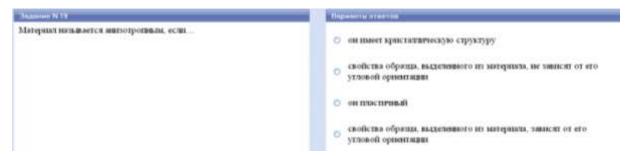


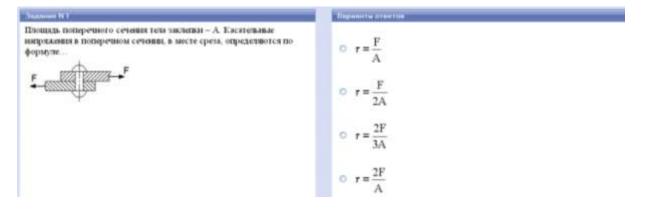


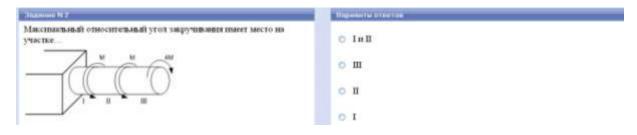


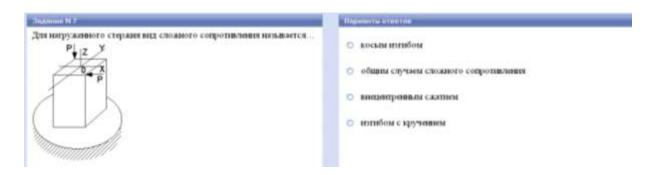


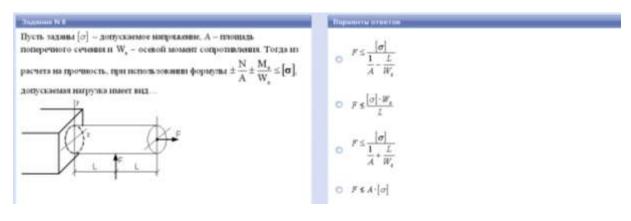


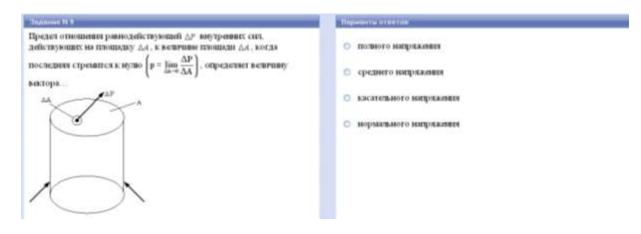




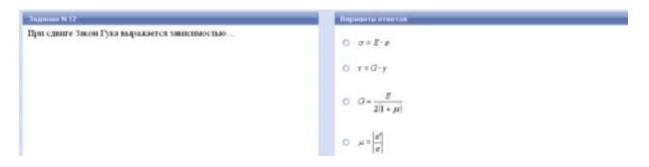


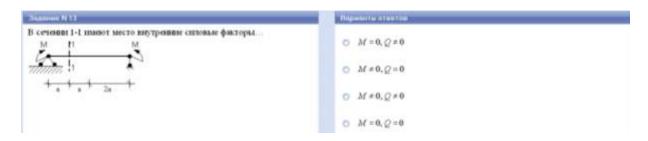




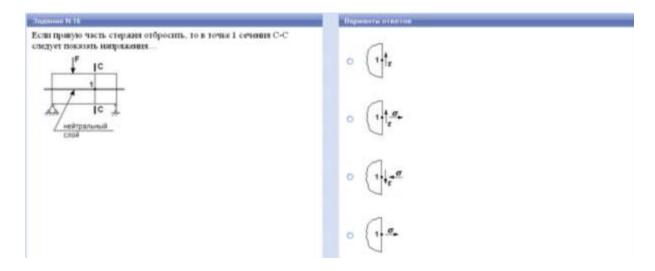


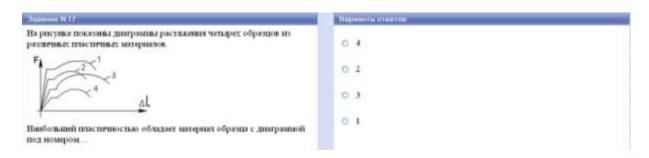
This man 11 8	This work interior
Вид напряванного состояния в описных точках при кручении с изгибом стермия круглого попирачного сечения	 вуливое ниприкливное состояние
	 ливыйное выпряженное состояние
	 изосное вищивыемное состояние
	 плоское инфиказиюе состояние (чистый сдвиг)

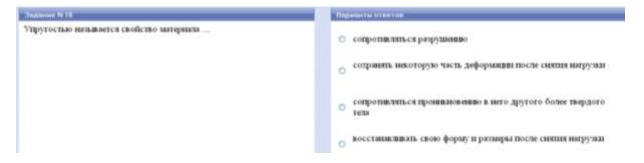


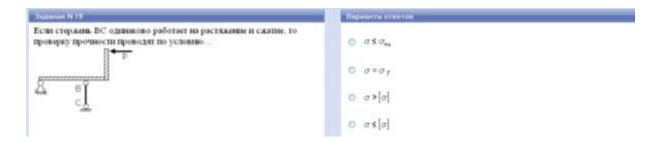


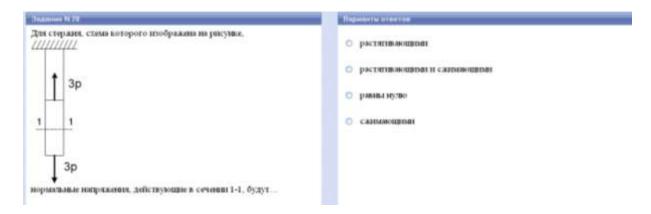


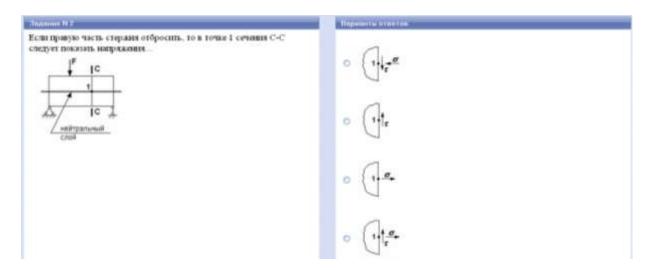


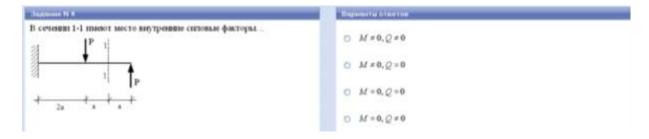


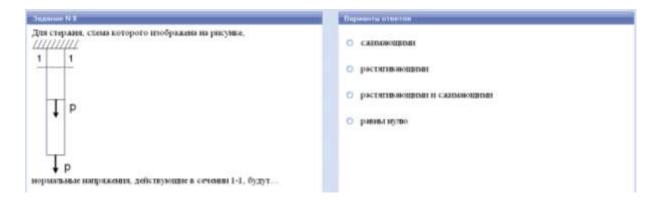


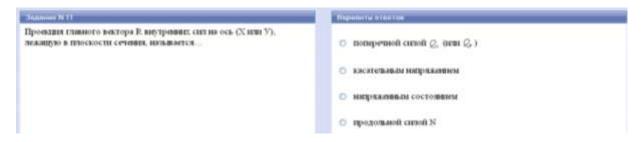


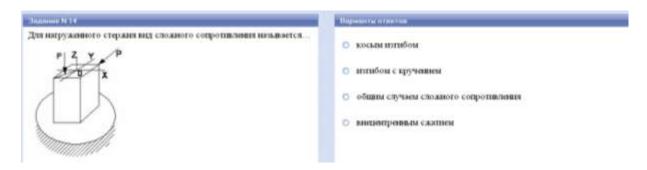


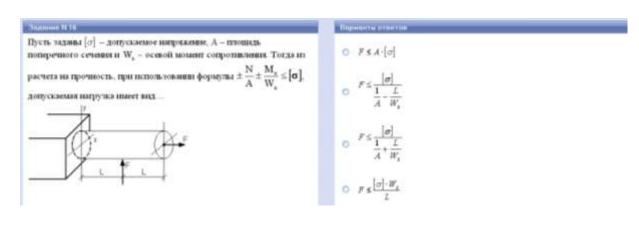




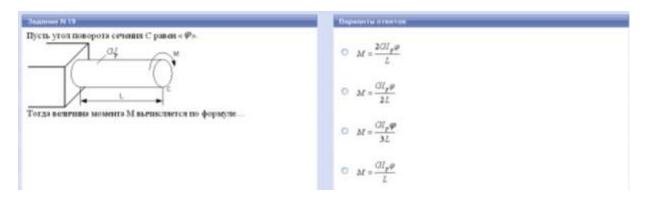


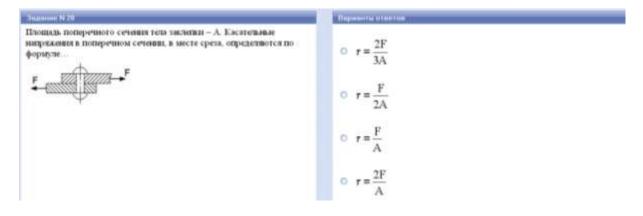


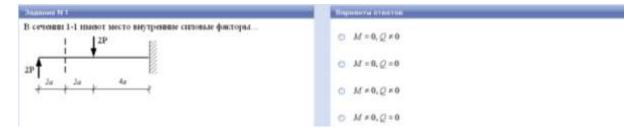

Chainer N S	Dispension Attention
При линейном интриженном состоянии Закон Гука выражается зависимостью	O *=G·y
	O σ=E-s
	○ e = M/1
	$\bigcirc O = \frac{E}{2(1 + \mu)}$

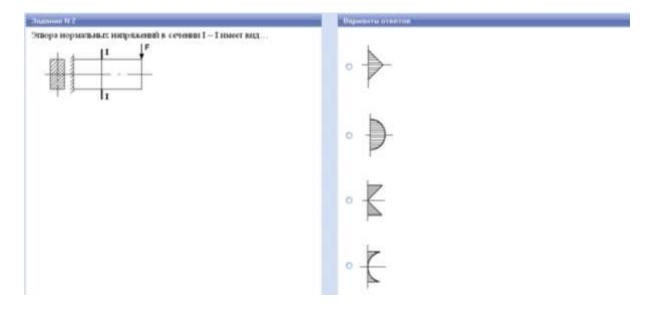


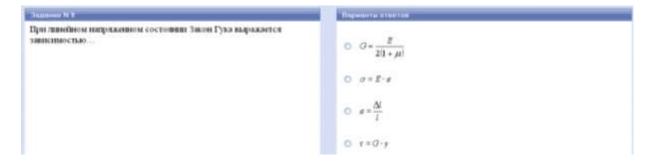




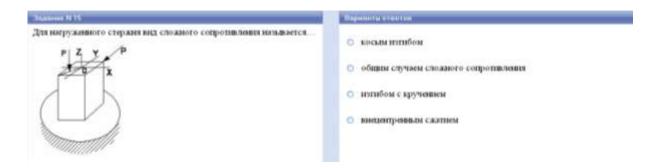


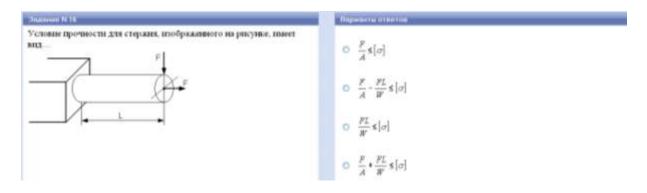


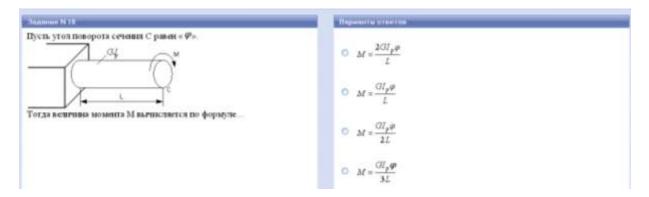


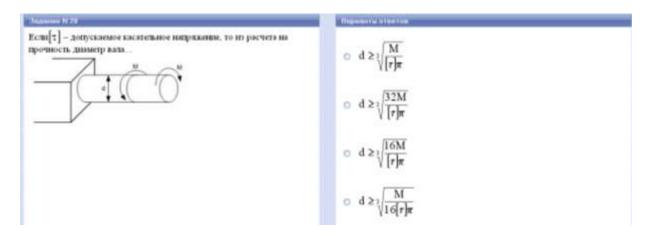


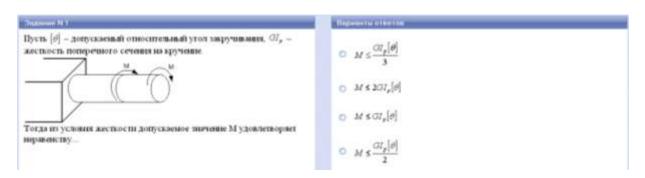
Innoved N 7	Expension control
Упругостью мивавается свойство вигериала	в осстановлявать свою форму и размеры после свищи изгрузки
	 сопротивляться разрушению
	о сохранять некоторую часть деформации после снятия нагружи
	о сопротивляться пронивлювению в него другого более твердого тель

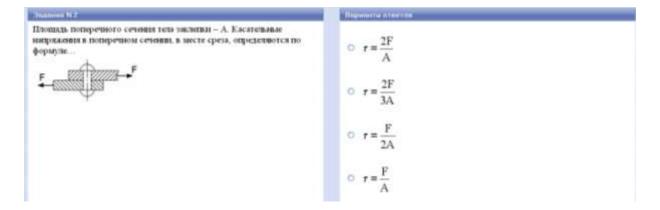


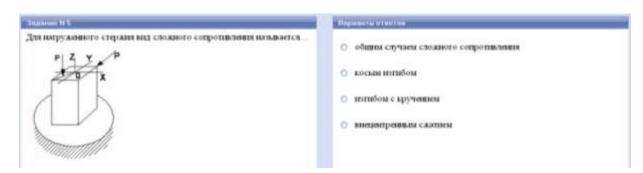


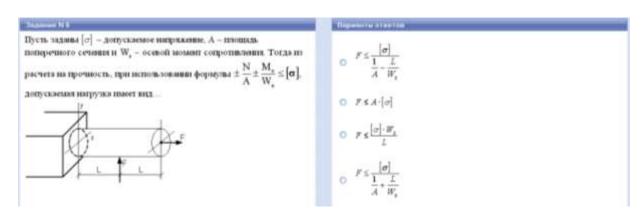


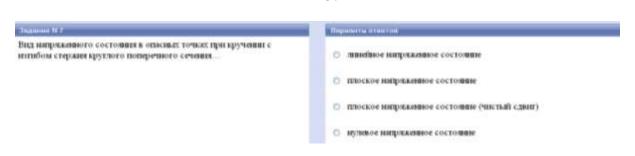


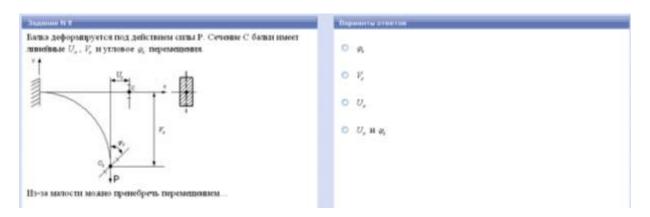


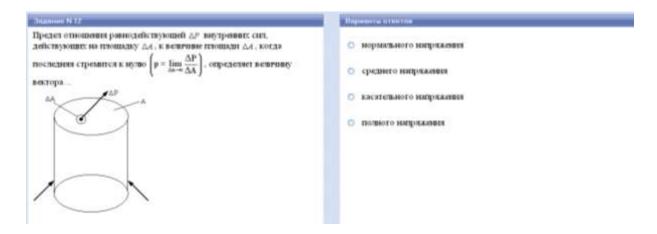


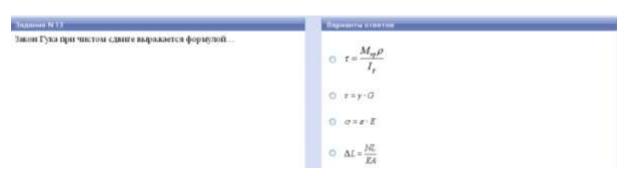


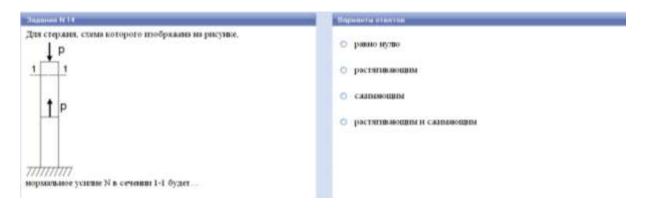


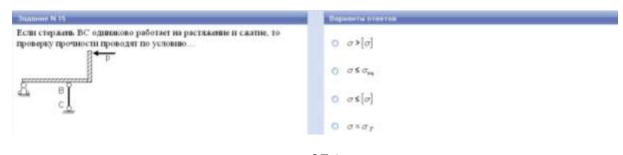




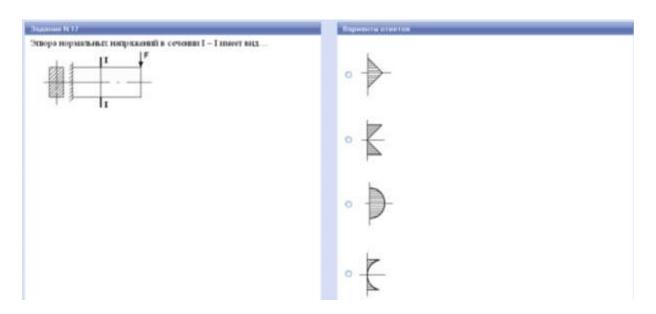


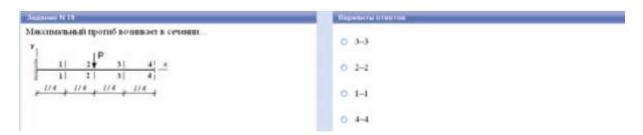


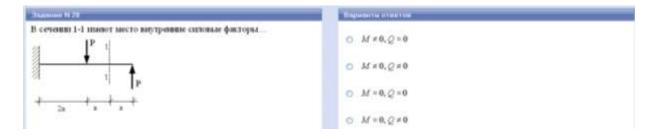


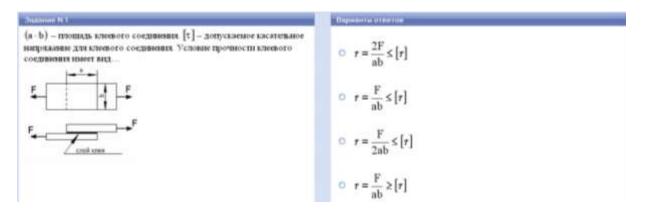


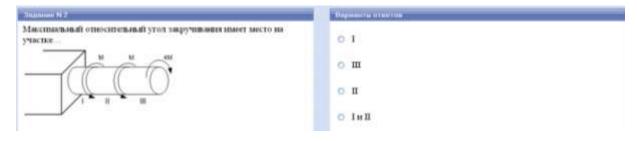

3sgmm HTI	Department of a constraint
Тело, джим которого ℓ существенно превышлет характерные размеры поперечного сечения (ширяны и высоты) δ и δ , незывается	 сторжием (брусом)
	обозочкой
	© пласивной
	 мьесивом (пространственным тепом)

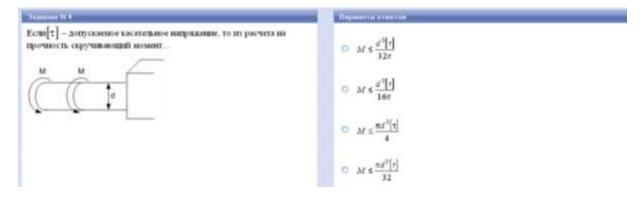


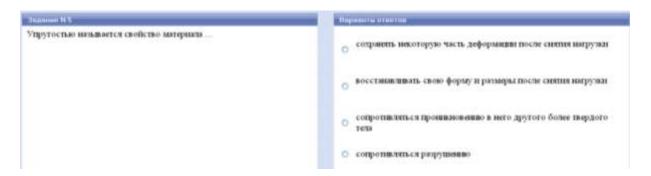


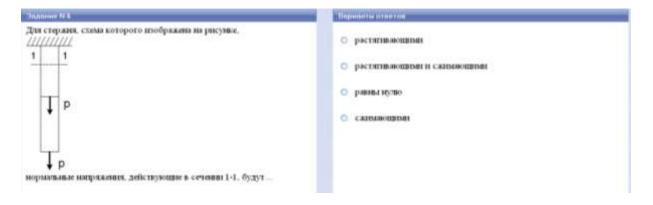


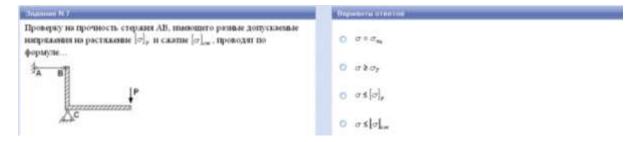


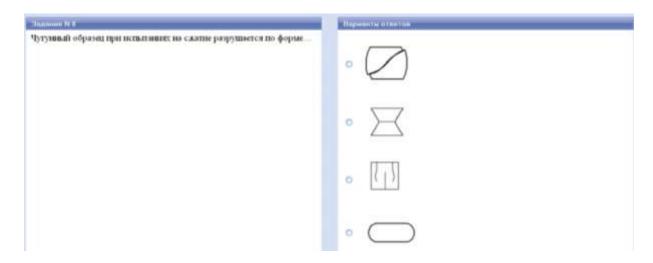


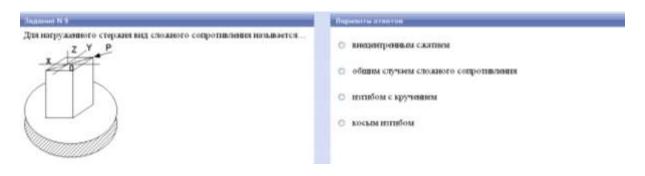


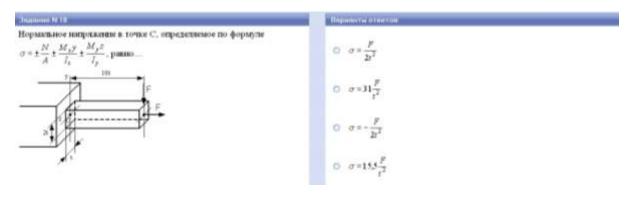


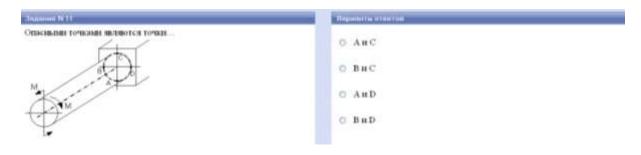


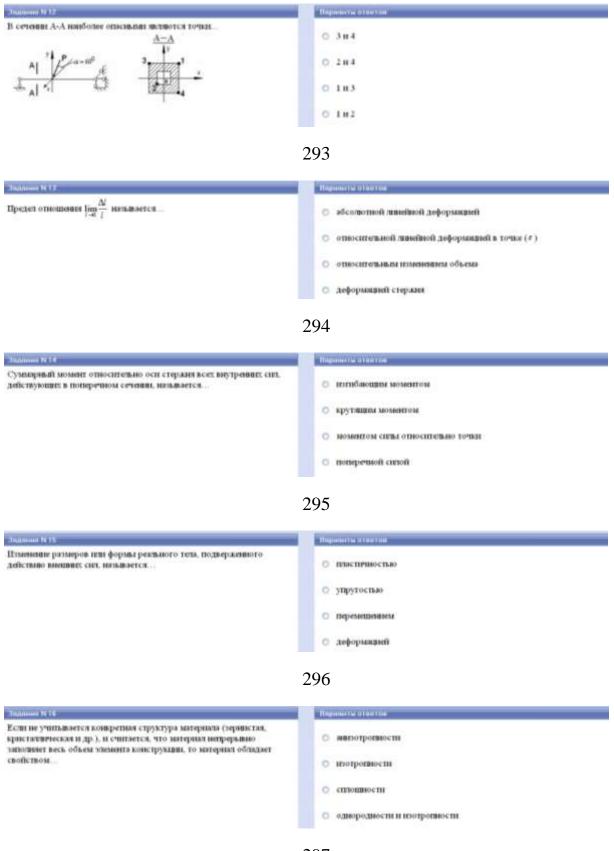


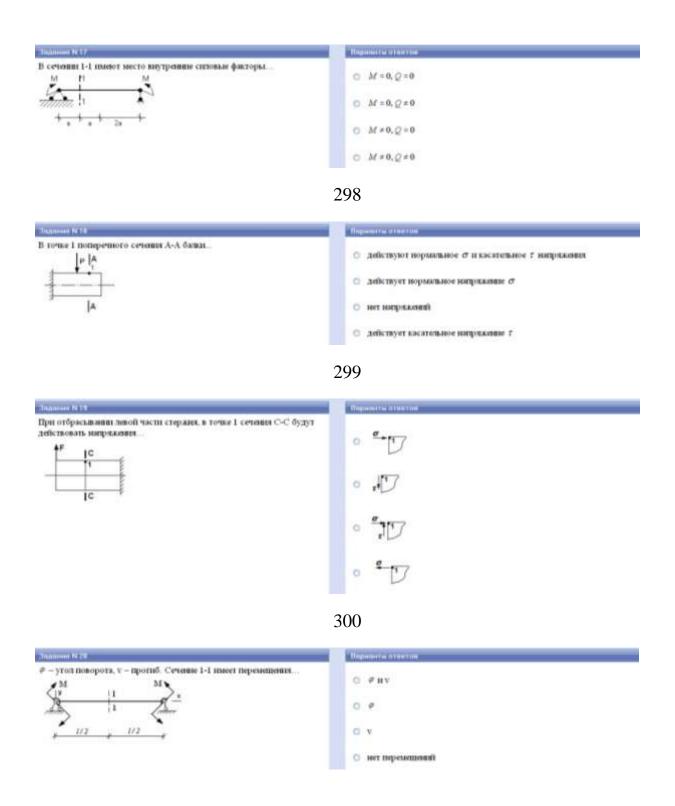


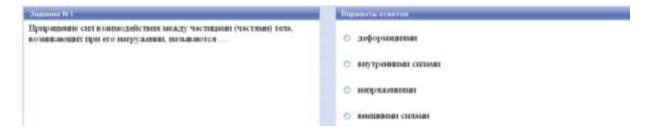




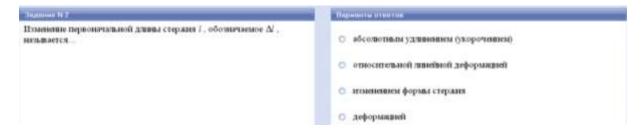




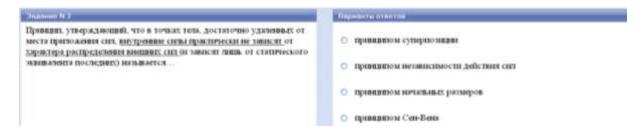




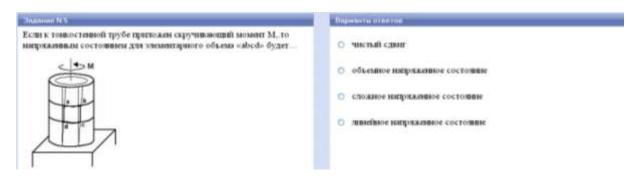
Тестовое задание (для текущего контроля) Тест №1

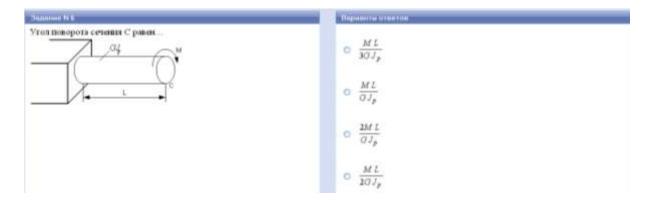

Время выполнения 15 мин.

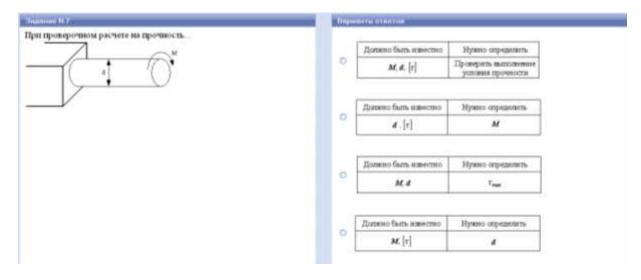
Количество вопросов 20.

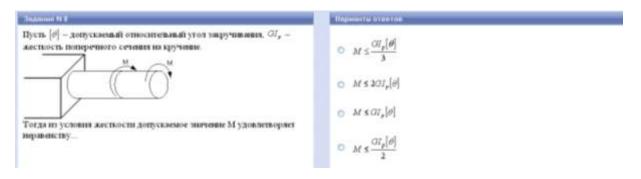

Форма работы – самостоятельная, индивидуальная.

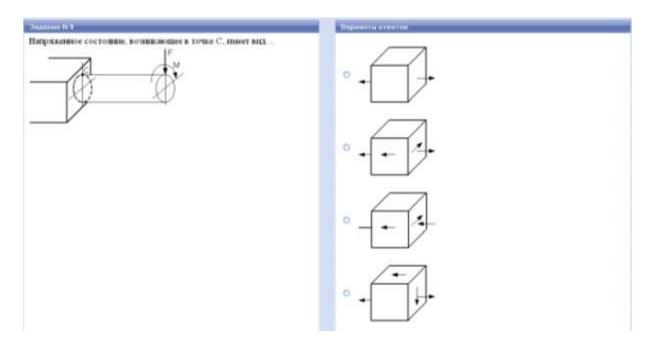
2. Выберите правильный ответ


3. Выберите правильный ответ

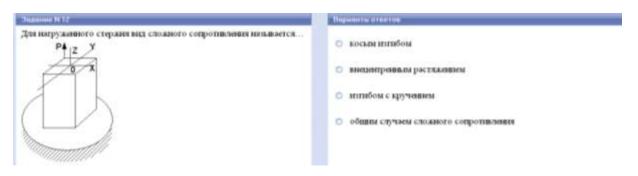


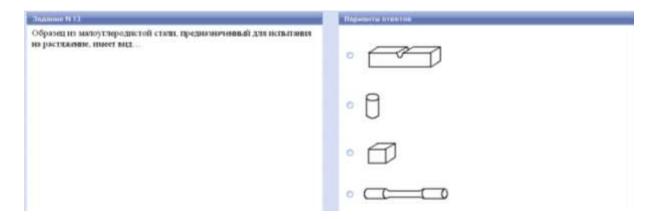

4. Выберите правильный ответ

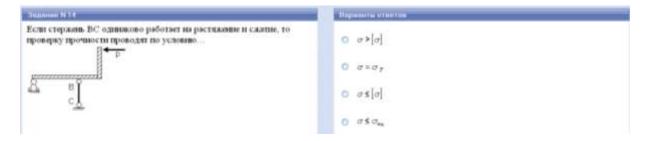

5. Выберите правильный ответ



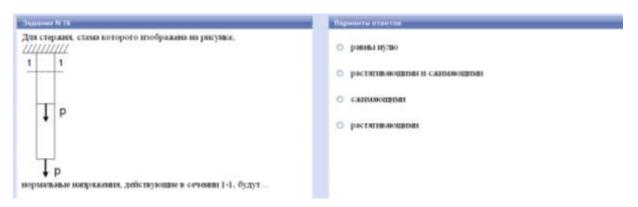
8. Выберите правильный ответ





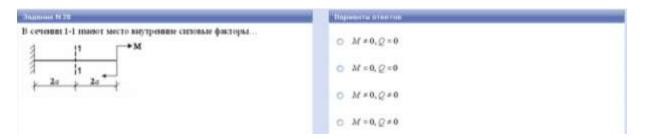

11.Выберите правильный ответ

12. Выберите правильный ответ



15. Выберите правильный ответ

16. Выберите правильный ответ



19. Выберите правильный ответ

20. Выберите правильный ответ

Ответ

1 2 3 4 ... B Критерии оценки уровня сформированности компетенций при выполнении теста:

Оценка	Показатели*
Отлично	85-100%
Хорошо	65-84%
Удовлетворительно	51-64%
Неудовлетворительно	менее 50%

^{* - %} выполненных заданий от общего количества заданий в тесте.

4.3 Коллоквиум (текущий контроль по разделам дисциплины)

Время проведения 25 мин.

Предусмотрено 3 коллоквиума:

- первый коллоквиум 23 вопроса;
- второй коллоквиум 23 вопроса;
- третий коллоквиум 23 вопроса.

Вопросы к коллоквиуму

Коллоквиум 1

- 1.Задачи и методы сопротивления материалов.
- 2.Классификация нагрузок.
- 3.Силы внешние и внутренние.
- 4. Напряжения и деформации.
- 5.Внутренние силы и напряжения при растяжении и сжатии.
- 6. Диаграмма растяжения малоуглеродистой стали.
- 7. Закон Гука при растяжении и сжатии.
- 8. Расчеты на прочность и жесткость при растяжении и сжатии.
- 9. Определение напряжений и подбор сечений при растяжении и сжатии с учетом собственного веса.
- 10. Стержень равного сопротивления при растяжении и сжатии с учетом собственного веса.
- 11. Подбор сечений для ступенчатых стержней.
- 12.Общие понятия о статически неопределимых стержневых системах.
- 13. Температурные напряжения.
- 14. Влияние неточностей изготовления на усилия в элементах статически неопределимых конструкций.

- 15. Напряжения по наклонным сечениям при осевом растяжении или сжатии.
- 16. Понятие о главных напряжениях. Виды напряженного состояния материала.
- 17. Напряжения при плоском напряженном состоянии.
- 18. Графическое определение напряжений при плоском напряженном состоянии (круг Мора).
- 19. Деформации при сложном напряженном состоянии (обобщенный закон Гука).
- 20. Понятие о чистом сдвиге.
- 21. Закон Гука при чистом сдвиге.
- 22. Расчет заклепочных и болтовых соединений.
- 23. Расчет сварных соединений.

Коллоквиум 2

- 1. Виды геометрических характеристик плоских сечений.
- 2. Теоремы о моментах инерции сечения.
- 3. Зависимость между моментами инерции сечения при повороте осей.
- 4. Главные центральные оси и моменты инерции относительно их.
- 4. Моменты инерции некоторых геометрических фигур.
- 5. Понятие о крутящем моменте.
- 6. Вычисление моментов, передаваемых на вал.
- 7. Напряжения и деформации при кручении вала круглого сечения.
- 8. Расчет валов круглого поперечного сечения на прочность и жесткость.
- 9. Расчет цилиндрических винтовых пружин с малым шагом витков.
- 10. Общие понятия о поперечном изгибе. Устройство опор балок.
- 11. Поперечная сила и изгибающий момент.
- 12. Построение эпюр поперечных сил и изгибающих моментов.
- 13. Определение нормальных напряжений при изгибе.
- 14. Определение касательных напряжений при изгибе.
- 15. Главные площадки и главные напряжения при изгибе.
- 16. Проверка прочности балки по нормальным и касательным напряжениям.
- 17. Обобщенное дифференциальное уравнение изогнутой оси балки.
- 18. Графоаналитический метод определения деформаций.
- 19. Потенциальная энергия деформации при изгибе.
- 20. Теорема Кастилиано.
- 21. Теорема Максвелла Мора.
- 22. Способ Верещагина.
- 23. Статически неопределимые балки.

Коллоквиум 3

1. Основная система и основные неизвестные метода сил.

- 2. Канонические уравнения метода сил.
- 3. Построение эпюр поперечных и продольных сил при использовании метода сил.
- 4. Понятие о косом изгибе.
- 5. Вычисление напряжений при косом изгибе.
- 6. Определение перемещений при косом изгибе.
- 7. Определение напряжений и проверка прочности при изгибе с кручением.
- 8. Изгиб балки при действии продольных и поперечных сил.
- 9. Внецентренное сжатие или растяжение.
- 10. Ядро сечения.
- 11. Вычисление изгибающих моментов, нормальных и поперечных сил в кривых стержнях.
- 12. Вычисление напряжений в кривых стержнях, связанных с поперечной и нормальной силами.
- 13. Вычисление напряжений в кривых стержнях, связанных с изгибающими моментами.
- 14. Вычисление радиуса кривизны нейтрального слоя для прямоугольного сечения при расчете кривых стержней.
- 15. Понятие о расчете по допускаемым нагрузкам.
- 16. Расчет статически неопределимых систем при растяжении и сжатии по способу допускаемых нагрузок.
- 17. Определение предельной грузоподъемности скручиваемого стержня.
- 18. Понятие о расчете по методу предельных состояний.
- 19. Понятие об устойчивости формы сжатых стержней.
- 20. Формула Эйлера для критической силы.
- 21. Влияние способа закрепления концов стержня при расчете на устойчивость.
- 22. Пределы применимости формулы Эйлера.
- 23. Проверка сжатых стержней на устойчивость.

Экзаменационный билет к <u>коллоквиуму 1</u> №1

Федеральное государственное образовательное учреждение высшего образования «Горский государственный аграрный университет» Кафедра Графики и механики

Дисциплина «Сопротивление материалов» для студентов 2 курса факультета механизации сельского хозяйства направление подготовки 35.03.06 «Агроинженерия»

Модуль 1

Билет №1

- 1. Закон Гука при растяжении и сжатии.
- 2. Понятие о главных напряжениях.
- 3. Расчет сварных соединений.

Составитель	А.Н.Баскаев
Зав. кафедрой	Л.П.Сужаев
« <u></u> »	2018 г.

Критерии оценки уровня сформированности компетенций при проведении коллоквиума:

- оценка «отлично»: обучающийся демонстрирует полное понимание материала, дает верные определения основных понятий, корректно использует терминологический аппарат, может обосновать свои суждения. Обучающийся приводит примеры не только из рекомендуемой литературы, но и самостоятельно составленные, демонстрирует способности анализа и высокий уровень самостоятельности. Занимает активную позицию в дискуссии;
- оценка «хорошо»: обучающийся демонстрирует полное понимание материала, дает верные определения основных понятий, корректно использует терминологический аппарат, может обосновать свои суждения. Обучающийся приводит примеры и демонстрирует высокий уровень самостоятельности, устанавливает причинно-следственные связи обсуждаемых проблем;
- оценка «удовлетворительно»: обучающийся слабо ориентируется в материале, допускает ошибки и неточности в определении основных понятий, преимущественно корректно использует терминологический аппарат. Обучающийся недостаточно доказательно и полно обосновывает свои суждения, с затруднением приводит свои примеры;

- оценка «неудовлетворительно»: обучающийся не ориентируется в материале, допускает ошибки и неточности в определении основных понятий, некорректно использует терминологический аппарат. Обучающийся не приводит примеры к своим суждениям. Не участвует в работе.

4.4 Расчетно-графическая работа

Для привития необходимых бакалавру навыков самостоятельной работы и навыков практического использования методов сопротивления материалов студенты выполняют за время изучения курса сопротивления материалов расчетно-графическую работу. Выполненную работу студенты защищают согласно графику. При защите выполненной работы студент должен продемонстрировать как знание теоретических вопросов, так и навыки решения соответствующих задач.

Требования к оформлению расчетно-графической работы.

- 1. Данные для выполнения задания следует выбирать из соответствующей таблицы [5] согласно своему номеру в групповом журнале.
- 2. Расчеты, выполненные с нарушением этого указания, не рассматриваются.
- 3. Все задания должны быть выполнены самостоятельно.
- 4. Задания выполняются на стандартных листах писчей бумаги формата A-4 (297×210 мм).
- 5. Все расчеты и пояснения к ним выполняются чернилами (пастой), записи ведутся только на одной стороне листа.
- 6. Графическая часть задания выполняется в виде эскизов на чертежной или миллиметровой бумаге, с использованием чертежного инструмента.
- 7. При расчетах необходимо:
- написать полное условие, привести численные данные и вычертить заданную схему, соответствующую варианту;
 - начертить расчетную схему;
- привести решение в общем виде, подставив численные значения только в конечные буквенные выражения (соблюдая последовательность подстановки и единицы измерения соответствующих величин);
 - записать численное значение результата и указать единицу измерения;
 - каждый этап расчета сопровождать краткими пояснениями.

Выполненная расчетно-графическая работа в установленные сроки передается преподавателю для проверки.

Данная работа проверяется, рецензируется и возвращается студенту. Возвращенная и, при необходимости, исправленная работа подлежит защите перед преподавателем. При защите работы студент должен продемонстрировать как знание теоретических вопросов данного модуля, так и навыки решения соответствующих задач.

Задание №1

Определить напряжения в стержнях 1 и 2 (рис. a) от действия силы Q и

повышения температуры на Δt °С.

Дано: схема № IV;
$$A = 0.25 \cdot 10^{-2} \text{ м}^2$$
;

$$\Delta t = 70$$
°C; a = 1,3; b = 1,5 m; c = 1,3 m;

$$l_1 = 0.8 \text{ m}; l_2 = 0.6 \text{ m}; Q = 120 \text{kH};$$

$$\alpha = 1.25 \cdot 10^{-5}$$
; $E = 2 \cdot 10^{5} \text{ M}\Pi a = 2 \cdot 10^{11} \Pi a$.

Напряжения в стержнях 1 и 2 будут определяться так:

$$\sigma_1 = \frac{R_1}{A}$$
; $\sigma_2 = \frac{R_2}{A}$,

где $R_1 = N_1 + N_1'$; $R_2 = N_2 + N_2'$ — продольные усилия в стержнях, численно равные реакциям; в свою очередь N_1 и N_2 — составляющие этих реакций от действия внешней силы Q; N_1' и N_2' — составляющие реакций от действия изменения температуры в стержнях.

Определяем N_1 и N_2 от действия Q (рис. δ).

Из условий равновесия статики:

$$\Sigma \mathbf{M_c} = -Q(a+b) + N_1 \cdot b + N_2 \cdot c \cdot \sin 45^\circ = 0 \text{ или}$$

$$-120 \cdot 2.8 + N_1 \cdot 1.5 + N_2 \cdot 1.3 \cdot 0.73 = 0, \text{ откуда}$$

$$N_1 = 224 - 0.6N_2 \ . \tag{1}$$

Имеем одно уравнение равновесия статики с двумя неизвестными, т.е. система I раз статически неопределима.

Составляем условия совместности деформации (Δl) стержней 1 и 2:

$$DD_1 = \Delta l_1$$
; $BB_1 = \frac{\Delta l_2}{\sin 45^\circ}$.

Из $\Delta DD_1C \propto \Delta BB_1C$:

$$\frac{DD_1}{BB_1} = \frac{b}{c}$$
; $\frac{\Delta l_1 \cdot \sin 45^\circ}{\Delta l_2} = \frac{b}{c} = \frac{1.5}{1.3} = 1.15$;

$$0.71 \cdot \Delta l_1 = 1.15 \cdot \Delta l_2;$$

$$\Delta l_1 = 1,6 \cdot \Delta l_2 \tag{2}$$

Уравнение (2) есть условие совместности деформаций.

Из закона Гука:

$$\Delta l_1 = \frac{N_1 \cdot l_1}{A \cdot E}; \quad \Delta l_2 = \frac{N_2 \cdot l_2}{A \cdot E}.$$

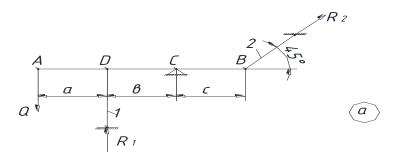
Тогда уравнение (2) приобретает вид:

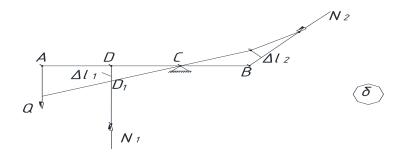
$$\frac{N_1 \cdot l_1}{A \cdot E} = 1.6 \frac{N_2 \cdot l_2}{A \cdot E}$$

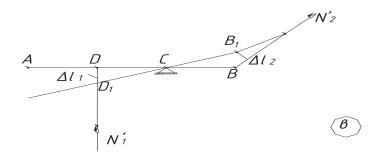
$$N_1 \cdot 0.8 = 1.6N_2 \cdot 0.6$$
 или

$$N_1 = 1, 2 \cdot N_2$$
 (2')

Решаем совместно (1) и (2′):


$$1.2 \cdot N_2 = 224 - 0.6 \cdot N_2$$
;


$$N_2 = \frac{224}{1.8} = 124 \text{ kH};$$


$$N_1 = 1.2 \cdot 124 = 149 \text{ kH}.$$

Оба стержня сжимаются (рис. δ), поэтому

$$N_1 = -149 \text{ kH}; \qquad N_2 = -124 \text{ kH}.$$

Определяем значения N_1' и N_2' из-за повышения температуры (рис. e).

Из условий равновесия статики:

$$\Sigma M_{c} = N_{1}' \cdot b - N_{2}' \cdot c \cdot \sin 45^{\circ} = 0;$$

$$N_{1}' = 0.6 \cdot N_{2}'.$$
(3)

Для раскрытия статической неопределимости используем условие совместности деформаций стержней:

$$\Delta l_1' = 1,6\Delta l_2',\tag{4}$$

где

$$\Delta l_1' = \alpha \cdot \Delta t \cdot l_1 - \frac{N_1' \cdot l_1}{A \cdot E}$$

$$\Delta l_2' = \alpha \cdot \Delta t \cdot l_2 + \frac{N_2' \cdot l_2}{A \cdot E},$$

где первые слагаемые – удлинения стержней от нагревания их в свободном состоянии, а вторые – укорочение и удлинение от взаимного силового действия стержней в стесненных условиях.

Подставляя значения $\Delta l_1'$ и $\Delta l_2'$ в (4), получим:

$$\alpha \cdot \Delta t \cdot l_{1} - \frac{N_{1}' \cdot l_{1}}{A \cdot E} = 1,6 \cdot \alpha \cdot \Delta t \cdot l_{2} + 1,6 \frac{N_{2}' \cdot l_{2}}{A \cdot E};$$

$$N_{1}' \cdot l_{1} = (\alpha \cdot \Delta t \cdot l_{1} - 1,6 \cdot \alpha \cdot \Delta t \cdot l_{2}) \cdot A \cdot E - 1,6 N_{2}' \cdot l_{2};$$

$$N_{1}' \cdot 0,8 = (1,25 \cdot 10^{-5} \cdot 70 \cdot 0,8 - 1,6 \cdot 1,25 \cdot 10^{-5} \cdot 70 \cdot 0,6) \cdot 0,25 \cdot 10^{-2} \cdot 2 \cdot 10^{11} - 1,6 \cdot N_{2}' \cdot 0,6;$$

$$0,8 \cdot N_{1}' = -7 \cdot 10^{4} - 0,96 \cdot N_{2}';$$

$$N_{1}' = -8,75 \cdot 10^{4} - 1,2 \cdot N_{2}'.$$

$$(4')$$

Решая совместно (3) и (4'), получим:

$$0,6 \cdot N_2' = -8,75 \cdot 10^4 - 1,2 \cdot N_2'$$
;
$$N_2' = -\frac{8,75 \cdot 10^4}{1,8} = -4,86 \cdot 10^4 \text{H} = -48,6 \text{ kH}$$

$$N_1' = 0.6 \cdot (-48.6) = -29.2 \text{ kH}.$$

Знаки «—» показывают, что обе реакции направлены в стороны, противоположные указанным на рис. e; следовательно стержень l работает на растяжение, а стержень 2 — на сжатие и тогда:

$$N_1' = 29.2 \text{ kH}; \qquad N_2' = -48.6 \text{ kH}.$$

Полные продольные усилия в стержнях:

$$R_1 = -149 + 29.2 = -119.8 \text{ kH};$$

$$R_2 = -124 - 48.6 = -172.6 \text{ kH}.$$

Определяем напряжения в стержнях I и 2 от действия силы $Q=120~\kappa H$ и повышения температуры на $\Delta t=70^{\circ}\mathrm{C}$:

$$\sigma_1 = \frac{R_1}{A} = -\frac{119,8 \cdot 10^3}{0,25 \cdot 10^{-2}} = -47,92 \cdot 10^6 \frac{H}{M^2} = -47,92 \text{ МПа (сжатие)};$$

$$\sigma_1 = \frac{R_2}{A} = -\frac{172,6 \cdot 10^3}{0.25 \cdot 10^{-2}} = -69 \cdot 10^6 \frac{H}{M^2} = -69 \text{ МПа (сжатие)}.$$

Задвние №2

Для стального вала, показанного на схеме IV построить эпюру крутящих моментов, определить из условия прочности на кручение диаметр вала и построить эпюру углов закручивания по длине вала.

Дано:
$$a=1$$
,2 м; $b=1$,4 м; $c=1$,2 м; $M_1=1400~H\cdot$ м; $M_2=1200~H\cdot$ м; $M_3=1400~H\cdot$ м; $M_4=1200~H\cdot$ м; $M_7=50~M\Pi a=50\cdot 10^6~\Pi a$

Пользуясь методом сечений, определяем крутящие моменты в сечениях I,II,III и IV

$$M_I = -M_4 = -1200\ H\cdot \mathrm{M}$$

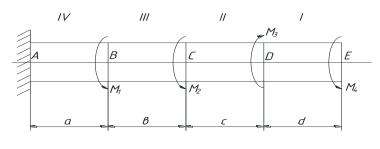
$$M_{II} = -M_4 + M_3 = -1200 + 1400 = 200\ H\cdot \mathrm{M}$$

$$M_{III} = -M_4 + M_3 - M_2 = -1200 + 1400 - 1200 = -1000\ H\cdot \mathrm{M}$$

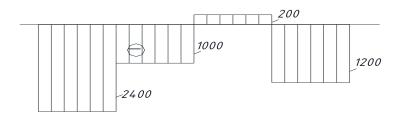
$$M_{IV} = -M_4 + M_3 - M_2 - M_1 = -1200 + 1400 - 1200 - 1400 = -2400\ H\cdot \mathrm{M}$$

По полученным данным строим эпюру крутящих моментов – Э. $M_{\kappa p}$

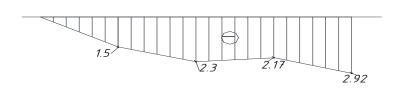
Из условия прочности в опасном сечении (IV)


$$\tau_{max} = \frac{M_{\text{kp } max}}{W_p} \le [\tau]$$

где
$$M_{\text{кр}\,max} = M_{IV} = 2400 \; \text{H} \cdot \text{м}$$


 $W_p = \frac{\pi d^3}{16} = 0.2d^3$ — полярный момент сопротивления круглого сечения.

 $au_{max} = \frac{M_{IV}}{0.2d^3} \le [\tau]$, определяем диаметр вала:


$$d = \sqrt[3]{\frac{M_{IV}}{0.2 \cdot [\tau]}} = \sqrt[3]{\frac{2400}{0.2 \cdot 50 \cdot 10^6}} = 6.2 \cdot 10^{-2} \text{ M}.$$

Э. Мкр (H·M)

Э. (рад.·10 ⁻²)

Принимаем $d = 70 \text{ мм} = 7 \cdot 10^{-2} \text{ м}$

Для построения эпюры углов закручивания определяем углы закручивания на концах участков по закону Гука

$$\mathbf{y}_i = \frac{\mathbf{M}_i \cdot l_i}{G \cdot J_p}$$

где M_i – крутящий момент,

 l_i – длина участка

 $G = 8 \cdot 10^4 \text{M}\Pi \text{a}$ – модуль упругости материала вала при сдвиге.

 $J_p=rac{\pi d^4}{32}=0$,1 $d^4=0$,1 $(7\cdot 10^{-2})^4=240$,1 $\cdot 10^{-8}$ м 4 — полярный момент инерции сечения вала.

$$G \cdot J_p = 8 \cdot 10^{10} \cdot 240,1 \cdot 10^{-8} = 19,2 \cdot 10^4 \text{Hm}^2.$$

Затем, начиная с защемления где $\mathbf{Y}=\mathbf{0}$, т.е. $\mathbf{Y}_{\mathbf{A}}$.=0, складываем по порядку значения этих углов:

$$\begin{split} \mathbf{y}_{\mathrm{B}} &= \mathbf{y}_{\mathrm{A}} + \frac{\mathbf{M}_{IV} \cdot a}{G \cdot J_{p}} = 0 + \frac{-2400 \cdot 1,2}{19,2 \cdot 10^{4}} = -1,5 \cdot 10^{-2} \mathrm{рад.} \\ \\ \mathbf{y}_{\mathrm{e}} &= \mathbf{y}_{\mathrm{B}} + \frac{\mathbf{M}_{III} \cdot b}{G \cdot J_{p}} = 1,5 \cdot 10^{-2} + \frac{-1000 \cdot 1,4}{19,2 \cdot 10^{4}} = -2,3 \cdot 10^{-2} \mathrm{рад.} \\ \\ \mathbf{y}_{\mathrm{A}} &= \mathbf{y}_{\mathrm{C}} + \frac{\mathbf{M}_{II} \cdot \mathbf{c}}{G \cdot J_{p}} = -2,3 \cdot 10^{-2} + \frac{200 \cdot 1,2}{19,2 \cdot 10^{4}} = -2,17 \cdot 10^{-2} \mathrm{рад.} \\ \\ \mathbf{y}_{\mathrm{E}} &= \mathbf{y}_{\mathrm{A}} + \frac{\mathbf{M}_{I} \cdot \mathbf{c}}{G \cdot J_{p}} = -2,17 \cdot 10^{-2} + \frac{-1200 \cdot 1,2}{19,2 \cdot 10^{4}} = -2,92 \cdot 10^{-2} \mathrm{рад.} \end{split}$$

По этим данным строится эпюры углов закручивания – Э У.

Задание №3

Дано: Схема: IV,
$$\alpha_1=\alpha_2=20^\circ$$
; $a=b=c=1.8$ м

N=40кВт; $\omega=40{\rm c}^{-1}$; $D_1=1.8$ м $D_2=1.4$ м; $[\sigma]=70$ МПа.

Решение

1. Моменты приложенные к шкивам

$$M_1 = \frac{N}{\omega} = \frac{40 \cdot 10^3}{40} = 1000 \,\mathrm{H} \cdot \mathrm{M}, \, M_2 = \frac{M_1}{2} = 500 \,\mathrm{H} \cdot \mathrm{M}$$

- 2. По найденным значениям строим эпюру крутящих моментов $ЭМ_{KP}$.
- 3. Определим окружные усилия

$$t_1 = \frac{2 \cdot M_1}{D_1} = \frac{2 \cdot 1000}{1,8} = 1111 \text{ H}$$

$$t_2 = \frac{2 \cdot M_2}{D_2} = \frac{2 \cdot 500}{1,4} = 714 \text{ H}$$

4. Определим давление на вал

$$F_1 = 3 \cdot t_1 = 3 \cdot 1111 = 3333 \text{ H}$$

 $F_2 = 3 \cdot t_2 = 3 \cdot 714 = 2142 \text{ H}$

5. Определим силы, изгибающие вал в вертикальной и горизонтальной плоскостях

$$F_1 y = F_1 \cdot \sin \alpha_1 = 3333 \cdot \sin \alpha_1 = 3333 \cdot 0,342 = 1140 \text{ H}$$
 $F_2 y = F_2 \cdot \sin \alpha_2 = 2142 \cdot \sin 20^\circ = 2142 \cdot 0,342 = 732,6 \text{ H}$
 $F_1 x = F_1 \cdot \cos \alpha_1 = 3333 \cdot 0,94 = 3133 \text{ H}$
 $F_2 x = F_2 \cdot \cos \alpha_2 = 2142 \cdot 0,94 = 2013,5 \text{ H}$

- 6. Построим эпюры изгибающих моментов
- а.) в вертикальной плоскости

$$\sum M_{A} = 0 \qquad F_{2}y \cdot a - F_{2}yb - F_{2}y \cdot (b+c) + R_{by} \cdot (2b+c) = 0$$

$$R_{By} = \frac{1140 \cdot 1,8 + 732,6 \cdot 3,6 - 732,6 \cdot 1,8}{5,4} = 624,2 \text{ H}$$

$$\sum y = 0; \qquad R_{Ay} + B_{By} - F_{1}y + 2F_{2}y = 0$$

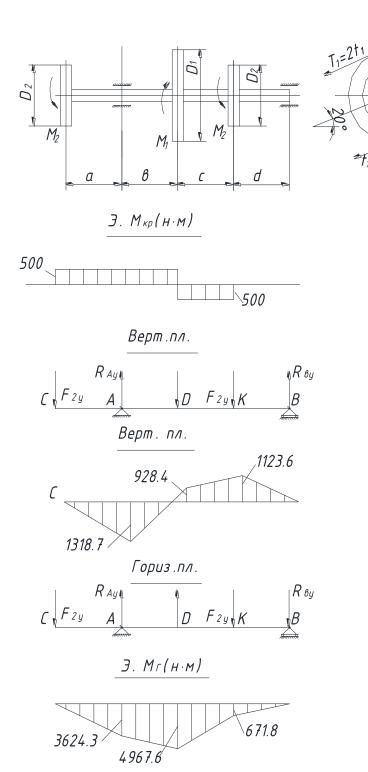
$$R_{Ay} = 1140 + 2732,6 - 624,2 = 1981 \text{ H}$$

Найдем моменты в характерных точках

$$\begin{split} \mathbf{M_{C}} &= \mathbf{M_{B}} = 0 \qquad \mathbf{M_{A}} = -F_{2y} \cdot a = -732, 6 \cdot 1, 8 = -1318, 7 \; \mathbf{H} \cdot \mathbf{M} \\ \mathbf{M_{D}} &= -F_{2y} \cdot (a+b) + R_{Ay} \cdot b = -732, 6 \cdot 3, 6 + 1981 \cdot 1, 8 \\ &= -2637, 4 + 3565, 8 = 928, 4 \; \mathbf{H} \cdot \mathbf{M} \\ \mathbf{M_{K}} &= R_{By} \cdot b = 624, 2 \cdot 1, 8 = 1123, 6 \; \mathbf{H} \cdot \mathbf{M} \end{split}$$

б.) горизонтальная плоскость

$$\sum M_{A} = 0 \qquad F_{2x} \cdot a + F_{1x} \cdot b - F_{2x} \cdot (b+c) + R_{3x} \cdot (2 \cdot b + c) = 0$$


$$R_{Bx} = \frac{2013.5 \cdot 3.6 - 2013.5 \cdot 1.8 - 3133 \cdot 1.8}{5.4} = +373.2 \text{ H}$$

$$\sum y = 0; \qquad R_{Ax} - R_{Bx} - 2F_{2x} + F_{1x} = 0$$

$$R_{Ax} = 373.2 + 2 \cdot 2013.5 - 3133 = 1267.2 \text{ H}$$

Моменты в характерных сечениях

$${
m M_{\rm C}}={
m M_{\rm B}}=0;$$
 ${
m M_{\rm A}}=-F_{2x}\cdot a=-2013,5\cdot 1,8=-3624,3$ мм ${
m M_{\rm A}}=-F_{2x}\cdot (a+b)+R_{Ax}\cdot b=-2013,5\cdot 3,6+1267,2\cdot 1,8=4967,6$ Н \cdot м ${
m M_{\rm K}}=-R_{{
m B}x}\cdot b=-373,2\cdot 1,8=-671,8$ Н \cdot м

7. Построение эпюры суммарных изгибающих моментов

$$\begin{split} M_{\text{сум}} &= \sqrt{M_{\text{Верт}}^2 + M_{\text{гор}}^2} \\ M_{\text{сум}}(\text{C}) &= M_{\text{сум}}(\text{B}) = 0; \quad M_{\text{сум}}(\text{A}) = \sqrt{1318,7^2 + 3624,3^2} = 3856,7 \text{ H} \cdot \text{м} \\ M_{\text{сум}}(\text{Д}) &= \sqrt{918,4^2 + 4967,6^2} = 5053,6 \text{ H} \cdot \text{м} \\ M_{\text{сум}}(\text{K}) &= \sqrt{1123,6^2 + 671,8^2} = 1309 \text{ H} \cdot \text{м} \end{split}$$

8. Определим расчетный момент в опасном сечении (сечение Д) по 3^{ей} теории прочности

$$M_{\text{расчет}} = \sqrt{M_{\text{кр}}^2 + M_{\text{сум}}^2} = \sqrt{500^2 + 5053,6^2} = 5078,3 \; \text{H} \cdot \text{м}$$

9. Определим диаметр вала из условия прочности

$$σ = \frac{M_{\text{pacqer}}}{W_{\text{r}}} \le [σ], \quad [σ] = 70 \text{ M}\Pi\text{a}$$

 W_x – осевой момент сопротивления

$$W_x = \frac{\pi d^3}{32} \approx 0,1d^3$$
, тогда

$$d \ge \sqrt[3]{rac{ ext{M}_{
m pacчет}}{0,1 \cdot [\sigma]}} = \sqrt[3]{rac{5078,3 \cdot 10^3}{0,1 \cdot 70}} = 89,9 \ ext{мм}$$

Принимаем d = 90 мм.

4.5 Оценочные средства для проведения итоговой аттестации в форме экзамена по дисциплине «Сопротивление материалов»

На итоговую аттестацию выносятся следующие компетенции, формируемые дисциплиной – ОПК-1, УК-1.

Время проведения 45 мин.

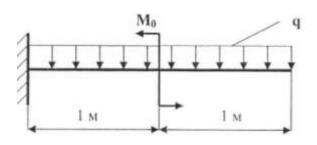
Предусмотрено 70 вопросов.

Примерный перечень вопросов к экзамену

- 1. Задачи и методы сопротивления материалов.
- 2. Классификация нагрузок.
- 3. Силы внешние и внутренние.
- 4. Напряжения и деформации.
- 5. Внутренние силы и напряжения при растяжении и сжатии.
- 6. Диаграмма растяжения малоуглеродистой стали.
- 7. Закон Гука при растяжении и сжатии.
- 8. Расчеты на прочность и жесткость при растяжении и сжатии.
- 9. Определение напряжений и подбор сечений при растяжении и сжатии с учетом собственного веса.
- 10. Стержень равного сопротивления при растяжении и сжатии с учетом собственного веса.
- 11. Подбор сечений для ступенчатых стержней.
- 12. Общие понятия о статически неопределимых стержневых системах.
- 13. Температурные напряжения.
- 14. Влияние неточностей изготовления на усилия в элементах статически неопределимых конструкций.
- 15. Напряжения по наклонным сечениям при осевом растяжении или сжатии.
- 16. Понятие о главных напряжениях. Виды напряженного состояния материала.
- 17. Напряжения при плоском напряженном состоянии.
- 18. Графическое определение напряжений при плоском напряженном состоянии (круг Мора).
- 19. Деформации при сложном напряженном состоянии (обобщенный закон Гука).
- 20. Понятие о чистом сдвиге.
- 21. Закон Гука при чистом сдвиге.
- 22. Расчет заклепочных и болтовых соединений.
- 23. Расчет сварных соединений.
- 24. Виды геометрических характеристик плоских сечений.
- 25. Теоремы о моментах инерции сечения.
- 26. Зависимость между моментами инерции сечения при повороте осей.
- 27. Главные центральные оси и моменты инерции относительно их.
- 28. Моменты инерции некоторых геометрических фигур.
- 29. Понятие о крутящем моменте.
- 30. Вычисление моментов, передаваемых на вал.
- 31. Напряжения и деформации при кручении вала круглого сечения.
- 32. Расчет валов круглого поперечного сечения на прочность и жесткость.
- 33. Расчет цилиндрических винтовых пружин с малым шагом витков.
- 34. Общие понятия о поперечном изгибе. Устройство опор балок.
- 35. Поперечная сила и изгибающий момент.
- 36. Построение эпюр поперечных сил и изгибающих моментов.
- 37. Определение нормальных напряжений при изгибе.

- 38. Определение касательных напряжений при изгибе.
- 39. Главные площадки и главные напряжения при изгибе.
- 40. Проверка прочности балки по нормальным и касательным напряжениям.
- 41. Обобщенное дифференциальное уравнение изогнутой оси балки.
- 42. Графоаналитический метод определения деформаций.
- 43. Потенциальная энергия деформации при изгибе.
- 44. Теорема Кастилиано.
- 45. Теорема Максвелла Мора.
- 46. Способ Верещагина.
- 47. Статически неопределимые балки.
- 48. Основная система и основные неизвестные метода сил.
- 49. Канонические уравнения метода сил.
- 50. Построение эпюр поперечных и продольных сил при использовании метода сил.
- 51. Понятие о косом изгибе.
- 52. Вычисление напряжений при косом изгибе.
- 53. Определение перемещений при косом изгибе.
- 54. Определение напряжений и проверка прочности при изгибе с кручением.
- 55. Изгиб балки при действии продольных и поперечных сил.
- 56. Внецентренное сжатие или растяжение.
- 57. Ядро сечения.
- 58. Вычисление изгибающих моментов, нормальных и поперечных сил в кривых стержнях.
- 59. Вычисление напряжений в кривых стержнях, связанных с поперечной и нормальной силами.
- 60. Вычисление напряжений в кривых стержнях, связанных с изгибающими моментами.
- 61. Вычисление радиуса кривизны нейтрального слоя для прямоугольного сечения при расчете кривых стержней.
- 62. Понятие о расчете по допускаемым нагрузкам.
- 63. Расчет статически неопределимых систем при растяжении и сжатии по способу допускаемых нагрузок.
- 64. Определение предельной грузоподъемности скручиваемого стержня.
- 65. Понятие о расчете по методу предельных состояний.
- 66. Понятие об устойчивости формы сжатых стержней.
- 67. Формула Эйлера для критической силы.
- 68. Влияние способа закрепления концов стержня при расчете на устойчивость.
- 69. Пределы применимости формулы Эйлера.
- 70. Проверка сжатых стержней на устойчивость.

Экзаменационный билет к <u>экзамену</u> №1


Федеральное государственное образовательное учреждение высшего образования

«Горский государственный аграрный университет» Кафедра Графики и механики

Дисциплина «Сопротивление материалов» для студентов 2 курса факультета механизации сельского хозяйства направление подготовки 35.03.06 «Агроинженерия»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Задачи сопротивления материалов.
- 2. Понятие о теориях прочности.
- 3. Задача: Определить диаметр балки из условия прочности по $[\sigma] = 160$ МПа. Дано: $M_0 = 20 \text{ кH·м}$; q = 40 кH/м.

Составитель	А.Н.Баскаев
Зав. кафедрой	Л.П.Сужаев
« »	2018 г.

Критерии оценки уровня сформированности компетенций при проведении итогового экзамена:

- оценка «отлично»: обучающийся имеет четкое представление о современных методах, методиках и технологиях, применяемых в рамках изучаемой дисциплины; свободно и правильно оперирует предметной и методической терминологией; свободно владеет вопросами экзаменационного билета: подтверждает теоретические знания дает практическими примерами; развернутые ответы на задаваемые дополнительные вопросы; имеет собственные суждения 0 решении теоретических и практических вопросов, связанных с профессиональной деятельностью;
- оценка «хорошо»: обучающийся имеет представление о современных методах, методиках и технологиях, применяемых в рамках изучаемой дисциплины; знает предметную и методическую терминологию дисциплины; излагает ответы на вопросы экзаменационного билета,

ориентируясь на написанное им в экзаменационном листе; подтверждает теоретические знания отдельными практическими примерами; дает ответы на задаваемые дополнительные вопросы;

- оценка «удовлетворительно»: обучающийся имеет посредственное представление о современных методах, методиках и технологиях, применяемых в рамках изучаемой дисциплины; правильно оперирует основными понятиями; отвечает на вопросы экзаменационного билета, главным образом, зачитывая написанное в экзаменационном листе; излагает, главным образом, теоретические знания по вопросам экзаменационного билета; не во всех случаях находит правильные ответы на задаваемые дополнительные вопросы;
- оценка «неудовлетворительно»: обучающийся не имеет представления о современных методах, методиках и технологиях, применяемых в рамках изучаемой дисциплины; не во всех случаях правильно оперирует основными понятиями; отвечает на экзаменационные вопросы, зачитывая их с текста экзаменационного листа; экзаменационные вопросы излагает не в полной мере; не отвечает на дополнительные вопросы. Не участвует в работе.